

NEUROGLIA

Bert Brône, prof dr

NeuroGlia

	Central Nervous System	Peripheral Nervous System	Enteric Nervous System
ıcroglia	Astrocytes		Enteric glia
	Oligodendrocytes	Schwann cells	
	Pericytes		
S	NG2 cells		
		Ganglionic glia	
	Microglia	Macrophages	phagocytes
	(A) Astrocyte	(B) Oligodendrocyte	(C) Microglial cell
			i

UHASSELI KNOWLEDGE IN ACTION

General tasks: to guard the neuronal microenvironment

- Energy consumption of the brain
- 50% → ion concentration gradients Na⁺/K⁺ Pump

UHASSE

General tasks: to guard the neuronal microenvironment

- Ionic concentrations \rightarrow excitability
- Support conduction of action potentials
- Nutrient concentrations
 - → Amino acids
 - \rightarrow Signal molecules
 - \rightarrow Energy supply

Development

Proliferation

 In humans, neurons are born between E42 and E125 (before MOST glial cells)

Shimojo 2011

Glial cells

- Originate from embryonic ectoderm
- Intimate morphological association with neurons

or

to seperate neuronal elements from mesodermal layers

→MACROGLIA

≠ MICROGLIA

••

LIHASSE

Reactive astrogliosis

Non-reactive astrocytes

In response to e.g. trauma, stroke, epilepsy, neurodegenerative diseases - upregulation of GFAP and hypertrophy of cellular processes are among the hallmarks

Pathophysiological responses - see Fig 8C

Activation e.g. by TGF α , CNTF, IL-6, LIF, oncostatin M

A defensive reaction aiming at

- · handling of acute stress
- · limiting tissue damage
- restoring homeostasis

Physiological responses - see Fig 8C

Reactive astrogliosis is

- · context (=disease) dependent
- multistage
- region specific
- diffuse or demarcating the lesion
- graded (from mild astrogliosis to a glial scar)

It is adaptive, but when it persists, can turn into maladaptive \rightarrow a target for therapeutic intervention

••

UHASSEL'

Astrocyte morphology

GFAP: Glial fibrillary Acidic Protein = principal intermediate filament (nanofilament) protein of astrocytes

UHASSEL

IOWLEDGE IN ACTION

Dye filing \rightarrow fine branches

Pekny, 2014

Blood Brain Barrier

Energy supply

Potassium buffering Extracellular space Neuron K* CL Glucose 2 K* Astrocyte †[K+]; 3 Na⁺ Na⁺ κ € 2 CI⁻ Na $[K^{+}]_{o} > 3 \text{ mM}$ (ceiling level ~12 mM)

▶► UHASSELT

Potassium buffering

Potassium spatial buffering by astrocytes. When brain $[K^+]_{\sigma}$ increases as a result of local neural activity, K^+ enters astrocytes via membrane channels. The extensive network of astrocytic processes helps dissipate the K^+ over a large area.

••

Tripartite synaps

Tripartite synaps

Oligodendrocytes

Oligodendrocytes produce myeline

Oligo vs Schwann

React to brain damage

••

Uderhardt 2019

Reemst 2016

How do microglia migrate in the embryonic cortex?

Microglia tasks: Synaptic remodeling

Developmental synaptic pruning

Complement dependent synaptic pruning

Complement system (C1q C3) marks synapses to be pruned

UHASSEL

NOWLEDGE IN ACTION

http://www.sciencemag.org/news/2016/08/woman-may-know-secret-saving-brain-s-synapses

Excessive synaptic pruning in disease

Complement marked synapses increased AD mice

Loss of synapses in AD mice

Glia-Neuron and Glia-Glia cross talk

Microglia-astrocyte cross talk

doi:10.1038/nature21029

Neurotoxic reactive astrocytes are induced by activated microglia

Shane A. Liddelow^{1,2}, Kevin A. Guttenplan¹, Laura E. Clarke¹, Frederick C. Bennett^{1,3}, Christopher J. Bohlen², Lucas Schirmer^{4,5}, Mariko L. Bennett¹, Alexandra E. Münch¹, Won-Suk Chung⁶, Todd C. Peterson⁷, Daniel K. Wilton⁸, Arnaud Frouin⁸, Brooke A. Napier⁹, Nikhil Panicker^{10,11,12}, Manoj Kumar^{10,11,12}, Marion S. Buckwalter⁷, David H. Rowitch^{13,14}, Valina L. Dawson^{10,11,12,15,16}, Ted M. Dawson^{10,11,12,16,17}, Beth Stevens⁸ & Ben A. Barres¹

Neuron-microglia cross talk

Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior

Yang Zhan^{1,8}, Rosa C Paolicelli^{1,8}, Francesco Sforazzini^{2,3}, Laetitia Weinhard¹, Giulia Bolasco¹, Francesca Pagani⁴, Alexei L Vyssotski⁵, Angelo Bifone², Alessandro Gozzi², Davide Ragozzino^{6,7} & Cornelius T Gross¹

CX3CR1 \rightarrow neuro glia cross talk

CX3CR1 KO

nature

- \rightarrow reduced synaptic events
- → Reduced fMRI connectivity

UHASSE

Models to study Glia

Glial Cell Models

- Cell lines
 - BV2, RBA-2, CG-4...
- Primary cell cultures
 - Shake off technique
 - FACS, MACS,...
- iPSC derived cells

RELEVANCE???

Primary cultured microglial cells

Glial Mouse Models

- Mouse reporter lines
 - Microglia: CX3CR1-eGFP, fmp
 - Astrocytes: GFAP-CFP
 - Oligodendrocytes: CNP-GFP
- IHC/markers
 - Microglia: Iba-1, TMEM119, CSF1R, Sal1, P2Y12
 - Astrocytes: GFAP, S100β, CD144
 - Oligodendrocytes: NG2, O4, MBP, PLP (different.)
- Depletion models
 - Microglia: Difteria tox, CSF1R AB, PU1 KO, clodronate, PLX compounds
 - Astrocytes: GFAP Cre?
 - Oligodendrocytes: cuprisone model,...

Literature

- "Neuroglia"
 - Helmut Kettenmann and Bruce R. Ransom
- "Reactive astrocyte nomenclature, definitions, and future directions." Escartin et al Nat Neurosci. 2021
- "Defining Microglial States and Nomenclature: A Roadmap to 2030" Cell 'Sneak Peek' Paolicelli et al

VHASSE

Questions? \rightarrow bert.brone@uhasselt.be

Glial cells make up 90 percent of the cells in our brain

UHASSEL1