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Abstract 
The future and spread of the Urban Air Mobility (UAM) largely relies on aircraft capable of fully electric vertical 
take-off and landing (eVTOL). The main power source of these vehicles for the propulsion system is the lithium-based 
batteries in general. Since an aircraft requires more dynamic power than ground-based vehicles. Battery aging that 
occurs during the long-term use of batteries should be considered much more for the safe and efficient mission of the 
eVTOL in UAM. Since battery aging cannot be measured directly, predictive methods are implemented and the state 
of health (SOH) of a battery is an important parameter to predict battery aging. In this study, a machine learning-based 
regression approach is applied to predict the state of health of the lithium-ion battery of eVTOL. For this purpose, the 
Random Forest, Decision Tree, and Polynomial Regression algorithms were tested on a public open dataset (only for 
the VAH01 mission) consisting of take-off, cruising, and landing flight phases for a lithium-ion battery of eVTOL. 
Additionally, 2nd, 3rd, and 4th-degree Polynomial algorithms were implemented and compared with each other and 
with other two regression algorithms. As a result, while the mean absolute error (MAE) for the Random Forest 
algorithm is 1.29 for the same problem in the literature, it was obtained as 0.95 in this study. In addition, to predict 
SOH, the lowest MAE was provided as 0.7 in the 2nd Polynomial algorithm among the entire algorithms implemented 
in this study. 
 

1 Introduction 
The term 'urban air mobility (UAM)' refers to cargo delivery, emergency management, and passenger mobility in 
metropolitan cities and surrounding [1][2]. Among the various aircraft configurations, VTOL-type (Vertical Take-Off 
and Landing) vehicles stand out as the most suitable choice for UAM, eliminating the need for traditional runways 
[3]. The academic and commercial research on VTOL-type aircraft is currently focused on three main areas: the 
propulsion system, autonomy, and conceptual design, with major companies like Uber Elevate, Hyundai, eHANG, 
Boeing-Aurora Transmitive, Grab, LILIUM, Supernal, Airbus, and BLADE actively involved in this trend.[4][5]. 

Fully-electric propulsion systems used in urban air mobility are especially attractive considering of environmental 
sustainability of VTOL aircrafts [6][7]. They may consist of a single energy source or a hybrid system (mono 
application of battery, fuel cell, solar cell, and supercapacitor or hybridisation of them). Considering energy/power 
density, response time, and cost, lithium-based batteries are the best option for non-hybrid propulsion systems of fully-
electrical VTOL (eVTOL) aircraft [8]. 

The development and widespread use of eVTOL vehicles heavily relies on batteries as a key technology. The critical 
considerations for lithium-based batteries in eVTOL vehicles encompass their designed lifespan, efficiency, and the 
assurance of safe operation during missions [9]. Thus, the reliable and efficient missions of eVTOLs rely on battery 
management systems (BMS) in practice. Moreover, air vehicles have a more dynamic power demand characteristic 
than on-ground vehicles. In other words, a eVTOL vehicle needs higher power demand in the take-off flight phase 
compared to other flight phases (landing and cruise) [10]. This situation accelerates battery aging, which, over time, 
causes unreliable missions, connection losses, and inefficient flights in eVTOL vehicles. [11]. As a result, eVTOL 
vehicles in urban air mobility require a BMS to ensure the safety and efficiency of their missions. The BMS includes 
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battery state indicators that cannot be measured directly, such as state of charge (SOC), state of health (SOH), state of 
function (SOF), state of temperature (SOT), remaining useful life (RUL), state of power (SOP), as well as aging and 
degradation prediction. 

The state of health (SOH) is defined as the rate of actual measured capacity to rated capacity, and it indicates the 
decrease in the capacity due to the battery aging. There are many SOH estimation studies for on-ground electric 
vehicles (they are summarized in References [12] and [13]). However, due to the scarcity of publicly available data 
and the difficulty of collecting data, there are limited studies for aircrafts. For electric vehicles, publicly available 
battery test data are summarized in Reference [14]. Accordingly, Fredericks et al. [15] share the battery (consisting of 
22 cells) measurement data of an eVTOL vehicle. This data set is important as it covers all flight phases and many 
different flight missions of the eVTOL vehicle in the UAM. Using this dataset, Granado et. al. [16]  performed the 
battery SOH estimation with Linear Regression, Support Vector Machines, k-Nearest Neighbours (kNN), Random 
Forest, and Gradient-Boosted Trees regression-based machine learning algorithms. They concluded that kNN is the 
most suitable algorithm in terms of the accurate prediction (test-R2 ≈ 0.98) and the low training time (1 μs/point). In 
the same dataset, Mitici et. al. [17] applied various machine-learning algorithms (Support Vector regression (SVR), 
Random Forrest (RF) regression, Gaussian Process regression (GPR), Extreme Gradient Boosting (XGBoost), and 
Multi-layer Perceptron (MLP)) for battery SOH and RUL estimation. They stated that Random Forest Regression and 
Extreme Gradient Boosting algorithms are well suitable for battery RUL and SOH estimation. Based on the literature 
search, it can be deduced that studies about the battery performance prediction of a VTOL vehicle for UAM seem to 
be limited to these two studies. However, there are some studies related to battery performance prediction in unmanned 
aerial vehicles designed for different missions (example of [18-24]).  

In this study, the SOH prediction of a lithium-ion battery for the eVTOL aircraft in Reference 5 was performed using 
machine learning-based algorithms. In this context, algorithms such as Random Forest, Decision Tree, and Polynomial 
regression were applied to the datasets in Reference [15]. In addition, hyperparameter tuning studies were carried out 
for these machine learning regression algorithms. Among these algorithms, the 2nd-order Polynomial algorithm 
provided the lowest mean absolute error (MAE). The novelty of this study is the application of the Decision Tree and 
Polynomial algorithms to this data set for the first time, as well as the application of the hyperparameter tuning and 
finding the best degree for the Polynomial regression. To summarize, this study makes the following contributions: 

1- A lower Mean Absolute Error than Ref. [17]  was obtained by tuning the hyperparameters of the Random Forrest 
regression algorithm for mission profile VAH01. Therefore, we have achieved more accurate results for the SOH 
prediction of the battery compared to the recent literature. 

2- The performances of 2nd, 3rd, and 4th-degree Polynomial algorithms were compared with each other for SOH 
prediction. Accordingly, the lowest MAE was provided by the 2nd-degree Polynomial algorithm. In addition, this 
MAE value (0.72) is the lowest value for the VAH01 mission according to the literature [17]. 

3-For the mission profile VAH01, Decision Tree regression and Polynomial algorithm were used first-time to predict 
the SOH of the battery in this study. 

4- Finally, this study contributes by providing the opportunity for comparison and validation to the literature in that 
there are very few studies on SOH prediction of lithium-ion batteries of the eVTOL vehicles. 

5- The SOH of lithium-ion battery is estimated using 4-fold cross-validation in this study, while 5-fold validation 
method is employed in the literature ([17]). 

2 Data description 
2.1. Dataset 

For machine learning-based SOH prediction, was used the dataset available at [15]. This dataset was collected for an 
eVTOL vehicle by researchers at Carnegie Mellon University in 2018-2019 and consists of 22 flight missions. Of 
these, VAH01, VAH17, and VAH27 are baseline flight missions, and other mission data sets consist of according to 
different cruising flight times, thermal chamber temperatures, CC (constant current) charge currents, and CV (constant 
voltage) charge voltages. In this study, SOH prediction studies based on machine learning were carried out only for 
the VAH01 flight mission, and it is planned to be applied to all flight missions as the extension of this study. Figure 1 
shows a representative flight profile for the baseline flight mission VAH01. The flights consist of take-off, cruising, 
and landing flight phases for every mission. 
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Figure 1: The basic VAH01 flight mission of the eVTOL vehicle. 

2.2. Baseline mission profiles and capacity tests 
Each flight mission profile data in Reference [15] consists of 10 variables: time (s), voltage (V), current (A), charge 
energy (Wh), charge capacity (mAh), discharge energy (Wh), discharge capacity (mAh), cell temperature (◦C), cycle 
number, and cycle segment. The VAH01 flight profile has 847 missions and 17 capacity tests. The mission that comes 
after every 50th mission is called a capacity test. In other words, the capacity tests are realized on 0., 51., 101...., and 
801. missions. In this study, as implemented in Reference [24], the 17 capacity tests were taken into account for the 
SOH prediction of the battery. In a capacity test, the remaining battery charge after the previous flight is decreased to 
0% SOC at a constant discharge rate of C/5 until the voltage decreases below 2.5 V. After that, the battery is charged 
to 100% SOC at a constant charging rate of 1 C-rate and a constant voltage of 4.2 V (Figure 1). This process is repeated 
for each capacity test (after every 50 missions). All missions of the eVTOL vehicle are carried out according to the 
following seven phases. In addition, 1st capacity test of the VAH01 is given as before (left) and during (right) flight 
in Figure 2. 

1-CC charging phase: The battery is charged in 1 C-rate until voltage approach 4.2 V. 

2-CV charging phase: This phase continues with a constant voltage of 4.2 V until current of the battery is under C/30. 

3-1st resting phase: This phase lasts until the battery cell temperature is 35 ◦C. 

4-Take-off phase: The eVTOL vehicle stars take-off that continue 75 seconds in total. The take-off phase has 54 W 
discharge power, 5 C-rate, and 1.12 Wh discharge energy. 

5-Cruising phase: In the cruising flight phase of the eVTOL, the battery has 800 s duration, 16 W discharge power, 
and 3.55 Wh discharge energy. 

6-Landing phase: In the cruising flight phase of the eVTOL, the battery has 105 s duration, 54 W discharge power, 5-
C rate, and 1.57 Wh discharge energy. 

7-2nd resting phase: This phase lasts until the battery cell temperature is 27 ◦C. 

 
Figure 2: Pre-flight (left) and during-flight (right) phases of the 1st capacity test in VAH01 mission. 

https://tureng.com/tr/turkce-ingilizce/continue
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3 Methodology 
3.1. Definition of State-of-Health 

The SOH of a battery is the ratio of the measured charge capacity to the nominal charge capacity. Since the nominal 
capacity of the battery used in the dataset is slightly smaller than the capacity value in the first capacity test. For this 
reason, the capacity in the first capacity test is considered instead of the nominal capacity for the SOH calculation in 
this study [17]. Eventually, the following Equation 1 can be used for the calculation of SOH. 

𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚,𝑐𝑐 =
𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖(𝑄𝑄𝑄𝑄ℎ𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖

𝑚𝑚,𝑐𝑐)
𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖(𝑄𝑄𝑄𝑄ℎ𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖

𝑚𝑚,0)
𝑚𝑚100 

(1) 

Where 𝑄𝑄𝑄𝑄ℎ𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖
𝑚𝑚,𝑐𝑐   represents the maximum measured capacity in a capacity test c of missin profile m. 𝑄𝑄𝑄𝑄ℎ𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖

𝑚𝑚,0 
represents the battery capacity in the first capacity test. Here, m is the number of missions and c is the number of 
capacity tests. 

3.2. Data preparing and definitions of the features for SOH prediction 
Mitici et al. [17] determined that 21 of the 33 features in the data set were highly important for SOH prediction of the 
battery. In this study, SOH prediction was performed using these 21 features for the VAH01 mission profile (see Table 
1). VAH01 consists of 17 capacity tests and 847 missions. These 21 features are obtained from the data set of VAH01 
mission for each capacity test and were used to train and test algorithms for the prediction of the SOH of the battery. 
After calculating these 21 features for 17 capacity tests, the SOH of the battery was estimated using these data. 

Feature Description Unit 
𝑉𝑉𝑣𝑣𝑣𝑣𝑣𝑣
𝑡𝑡𝑣𝑣𝑡𝑡𝑡𝑡−𝑜𝑜𝑜𝑜𝑜𝑜 Variance voltage during take-off V 

𝑉𝑉𝑚𝑚𝑖𝑖𝑚𝑚
𝑡𝑡𝑣𝑣𝑡𝑡𝑡𝑡−𝑜𝑜𝑜𝑜𝑜𝑜 Min. voltage during take-off V 
∆𝐶𝐶𝐶𝐶 Duration CC charging  s 
∆𝐶𝐶𝐶𝐶 Duration CV charging s 

𝑉𝑉𝑚𝑚𝑡𝑡𝑣𝑣𝑚𝑚
𝑡𝑡𝑣𝑣𝑡𝑡𝑡𝑡−𝑜𝑜𝑜𝑜𝑜𝑜 Mean voltage during take-off V 
∆𝑣𝑣𝑡𝑡𝑟𝑟𝑡𝑡 Duration rest phase after charging s 

𝑇𝑇𝑚𝑚𝑣𝑣𝑚𝑚
𝑙𝑙𝑣𝑣𝑚𝑚𝑙𝑙𝑖𝑖𝑚𝑚𝑙𝑙 Max. battery cell surface temperature during landing ◦C 
𝑇𝑇𝑚𝑚𝑣𝑣𝑚𝑚
𝑐𝑐𝑣𝑣𝑐𝑐𝑖𝑖𝑟𝑟𝑡𝑡 Max. battery cell surface temperature during cruise ◦C 

𝑉𝑉𝑚𝑚𝑖𝑖𝑚𝑚𝑐𝑐𝑣𝑣𝑐𝑐𝑖𝑖𝑟𝑟𝑡𝑡 Min. voltage during cruise V 
𝑇𝑇𝑚𝑚𝑣𝑣𝑚𝑚
𝑡𝑡𝑣𝑣𝑡𝑡𝑡𝑡−𝑜𝑜𝑜𝑜𝑜𝑜 Max. battery cell surface temperature during take-off ◦C 
𝑉𝑉𝑚𝑚𝑣𝑣𝑚𝑚
𝑐𝑐𝑣𝑣𝑐𝑐𝑖𝑖𝑟𝑟𝑡𝑡 Max. voltage during cruise V 

𝑉𝑉𝑣𝑣𝑣𝑣𝑣𝑣
𝑙𝑙𝑣𝑣𝑚𝑚𝑙𝑙𝑖𝑖𝑚𝑚𝑙𝑙 Variance voltage during landing V 

𝑉𝑉𝑚𝑚𝑣𝑣𝑚𝑚
𝑡𝑡𝑣𝑣𝑡𝑡𝑡𝑡−𝑜𝑜𝑜𝑜𝑜𝑜 Max. voltage during take-off V 

𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑚𝑚𝑣𝑣𝑚𝑚
𝑡𝑡𝑣𝑣𝑡𝑡𝑡𝑡−𝑜𝑜𝑜𝑜𝑜𝑜 Max. discharge capacity during take-off Ah 

𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑚𝑚𝑖𝑖𝑚𝑚
𝑡𝑡𝑣𝑣𝑡𝑡𝑡𝑡−𝑜𝑜𝑜𝑜𝑜𝑜 Min. discharge capacity during take-off Ah 

∆𝑡𝑡𝑣𝑣𝑡𝑡𝑡𝑡−𝑜𝑜𝑜𝑜𝑜𝑜 Duration take-off flight phase s 
𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑚𝑚𝑡𝑡𝑣𝑣𝑚𝑚

𝑡𝑡𝑣𝑣𝑡𝑡𝑡𝑡−𝑜𝑜𝑜𝑜𝑜𝑜 Mean discharge capacity during take-off Ah 
𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑚𝑚𝑖𝑖𝑚𝑚

𝑐𝑐𝑣𝑣𝑐𝑐𝑖𝑖𝑟𝑟𝑡𝑡  Min. discharge capacity during cruise Ah 
𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑣𝑣𝑣𝑣𝑣𝑣

𝑙𝑙𝑣𝑣𝑚𝑚𝑙𝑙𝑖𝑖𝑚𝑚𝑙𝑙 Variance discharge capacity during landing Ah 
𝑉𝑉𝑚𝑚𝑖𝑖𝑚𝑚
𝑙𝑙𝑣𝑣𝑚𝑚𝑙𝑙𝑖𝑖𝑚𝑚𝑙𝑙 Min. voltage during landing V 

𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑣𝑣𝑣𝑣𝑣𝑣
𝑡𝑡𝑣𝑣𝑡𝑡𝑡𝑡−𝑜𝑜𝑜𝑜𝑜𝑜 Variance discharge capacity during take-off Ah 

Table 1: Features used in the prediction of battery SOH. 
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3.3. Performance metric 
Mean Absolute Error (MAE) was used to compare the performance of the machine learning algorithms used to predict 
the state of health. MAE represents the average of absolute errors, and being close to zero means that the predictive 
ability of the model is robust. For SOH prediction of the battery, the MAE calculation of each mission and their 
average are given in Equations 2 and 3, respectively. 

𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚 =
1
𝐶𝐶𝑚𝑚

��𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚,𝑖𝑖 − 𝑆𝑆𝑆𝑆𝑆𝑆�𝑚𝑚,𝑖𝑖�
𝐶𝐶𝑚𝑚

𝑖𝑖=1

 
(2) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆 =
1
𝑀𝑀
�𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆

𝑗𝑗
𝑀𝑀

𝑗𝑗=1

 
(3) 

where, 𝑆𝑆𝑆𝑆𝑆𝑆 and 𝑆𝑆𝑆𝑆𝑆𝑆�  represent true SOH and predicted SOH of the battery, respectively (m: the number of missions 
and c: the number of capacity tests). The  𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚  and 𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆 represent mean absolute error at mission profile 
m and mean absolute error for the entire mission, respectively. Additionally, M and C state the total number of mission 
and total number of capacity tests, respectively. 

4 Results and discussion 
The predicted battery SOH results for the Random Forest (RF) algorithm are given in Table 2. Accordingly, the MAE 
for the default RF algorithm was 1.21, while after the hyperparameters were tuned, the MAE decreased to 0.95. For 
the same algorithm and the same flight mission  (VAH01), the 0.95 value is lower than as in the literature 
(approximately 1.06, please see Reference [17]). By hyperparameter tuning, the prediction of 1st capacity test is 
reasonably improved from 95.31% (for default parameter setting) to 96.33% on this algorithm. While the true battery 
SOH was 83.83% in the 12th capacity test, it was the best prediction amongst SOH predictions as 83.78% by the 
tuning the hyperparameters of the random forest algorithm on this capacity test.  On the last capacity test, the predicted 
SOH was obtained as 81.70% for default hyperparameters, however this is optimised to 81.16% by the tuning of these 
hyperparameters. 

Algorithm Capacity 
Tests 

True 
SOH (%) 

Predicted 
SOH (%) 

 
MAE 

 
Hyperparameters 

Random Forest (default)    1.21 N. Estimators:100 
 1 st 100 95.31 Min. Samples Split:2 
 4 th 91.85 91.79  Min. Samples Leaf:1 
 8 th 87.45 87.13  Max. Depth:None 
 12 th 83.83 84.09  Bootstrap:True 
 16 th 80.98 81.70 Max. Features:’auto’ 
    Random State:0 
    Criteration:MSE 
      
      

Random Forest (tuning)    0.95 N. Estimators:100 
 1 st 100 96.33  Min. Samples Split:2 
 4 th 91.85 91.45   Min. Samples Leaf:1 
 8 th 87.45 86.99   Max. Depth:None 
 12 th 83.83 83.78   Bootstrap:True 
 16 th 80.98 81.16  Max. Features:’auto’ 
     Random State:0 

     Criteration:MSE 
Table 2: SOH prediction results for the Random Forest algorithm. 
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The battery SOH prediction results carried out with the Decision Tree algorithm are presented in Table 3. After tuning 
the hyperparameters of this algorithm, the MAE dropped from 2.35 to 2.64. By hyperparameter tuning, the prediction 
of 1st capacity test is significantly improved from 90.50% (for default parameter stetting) to 95.09% on this algorithm. 
In the last capacity test (in 16-th capacity test), the actual SOH and the predicted SOH for the tuned Decision Tree 
algorithm were calculated as 80.98% and 82.31%, respectively. 

Algorithm Capacity 
Tests 

True  
SoH (%) 

Predicted  
SoH (%)  

MAE Hyperparameters 

Decision Tree (default)    2.64 Splitter:best 
 1 st 100 90.50  Min. Samples Split:2 
 4 th 91.85 93.33   Min. Samples Leaf:1 
 8 th 87.45 86.83   Max. Depth:None 
 12 th 83.83 85.26   Random State:0 
 16 th 80.98 80.81  Criteration:MSE 
      

Decision Tree (tuning)    2.35 Splitter:best 
 1 st 100 95.09  Min. Samples Split:5 
 4 th 91.85 89.96   Min. Samples Leaf:1 
 8 th 87.45 86.37   Max. Depth:2 
 12 th 83.83 86.37   Random State:0 

 16 th 80.98 82.31  Criteration:MSE 
Table 3: SOH prediction results for the Decision Tree algorithm. 

 
The SOH prediction results of the Polynomial Regression algorithm are presented in Table 4. 2nd, 3rd, and 4th order 
Polynomial Regression algorithms were compared in terms of MAE and predicted SOH. Accordingly, the MAE for 
the 2nd, 3rd and 4th order Polynomial Regression algorithms was calculated as 0.72, 0.83, and 1.04, respectively. In 
this study, the lowest MAE among the algorithms applied for SOH prediction was obtained with the 2nd order 
Polynomial Regression (by 0.72).  

 
Algorithm Number of Cyle  True SOH Predicted SOH  MAE 

Polynomial Regression (2nd order)     0.72 
 0  100 99.46  
 4  91.85 93.36  
 8  87.45 86.92  
 12  83.83 84.31  
 16  80.98 80.4  

Polynomial Regression (3rd order)     0.83 
 0  100 99.34  
 4  91.85 93.41  
 8  87.45 86.91  
 12  83.83 84.34  
 16  80.98 80.11  

Polynomial Regression (4th order)     1.04 
 0  100 99.20  
 4  91.85 93.36  
 8  87.45 86.91  
 12  83.83 84.42  
 16  80.98 79.19  
Table 3: Results for the Polynomial Regression algorithm. 
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The comparison of the algorithms applied in this study and the literature is given in terms of MAE in Table 4. The 
lowest MAE value is attained with the application of 2nd order Polynomial Regression which is called quadratic 
model. 
 

Algorithm MAE Ref. 
Polynomial Regression (2nd order) 0.72 This study 

Decision Tree 2.35 This study 
Random Forest 0.95 This study 
Random Forest 1.29 [17] 

SVR 1.09 [17] 
XGBoost 1.20 [17] 

GPR 1.18 [17] 
MLP 2.14 [17] 

Table 4: MAE comparison for SOH prediction of the battery in VAH01 mission. 

5 Conclusions 
In this study, using the publicly available battery performance dataset of an eVTOL vehicle, state of health prediction 
of the lithium-ion battery was performed with regression-based machine learning algorithms. This dataset has 22 
different flight missions with different flight phase demand powers (take-off, cruise, landing), ambient temperature, 
and cruise duration. Among these flight missions, SOH prediction for the VAH01 mission was performed with 
Random Forest, Decision Tree, and Polynomial Regression algorithms. Consequently, the conclusions and 
contributions of this study can be given as follows: 
 
1- In this study, Decision tree and Polynomial Regression algorithms have been applied for the first time for the SOH 
prediction of the battery on this data set. 
 
2-Among the Random Forest, Polynomial Regression, and Decision Tree algorithms used in this study for SOH 
prediction of the lithium-ion battery, the lowest MAE was achieved as 0.72 by the 2nd order Polynomial Regression 
algorithm. This MAE value is lower than the MAE values provided by other algorithms applied in the literature for 
the SOH prediction of battery on the VAH01 mission profile (please see Table 4). 
 
3- For SOH estimation, 2nd, 3rd, and 4th order Polynomial Regression algorithms were compared, and the MAE 
values for these algorithms were 0.72, 0.83, and 1.04, respectively. 
 
In the continuation of this study, the authors plan to estimate SOH, temperature, and RUL for all flight missions in the 
data set using the machine learning algorithms implemented in this study. In addition, domain adaptation and domain 
generalization studies will be carried out on this data set. 
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