
DICUAM 2024, 22-24 March 2024

Numerical methods to predict turbulent boundary-layer trailing
edge noise for rotating blade devices

Caterina Poggi*1, Giovanni Bernardini1 and Massimo Gennaretti1

1Roma Tre University, Department of Civil, Computer Science and Aeronautical Technologies
Engineering, Rome, Italy

*caterina.poggi@uniroma3.it

Abstract
The proposed paper focuses on numerical methods for predicting the turbulent boundary-layer trailing edge noise in
the case of rotating devices. In particular, three approaches are theoretically/numerically developed and compared:
a fully analytical approach based on the Amiet theory with the inclusion of the back-scattering correction and
two hybrid numerical-analytical approaches. The latter two are based on evaluating the pressure over the blades’
surfaces through the Amiet model, while the noise radiation in the far field is performed numerically through the
Farassat 1A formulation and its compact source version. All the approaches are successfully validated through a
comparison with experimental data available in the literature. The use of numerical techniques to perform the noise
radiation enhances the accuracy of the prediction even if the drawback is an increase in the required computation
effort. In this framework, the exploitation of the compact-source Farassat 1A formulation, which represents the
major novelty of the work, seems to be a good compromise between accuracy and computational cost.

1 Introduction
The exponential growth of city overcrowding and pollution is leading academia and industries to seek innovative
and eco-friendly alternatives to standard urban transportation. In this context, Urban Air Mobility (UAM) repre-
sents a possible solution made feasible by the significant technological improvements characterizing the aviation
industry, including the advances in electric propulsion and batteries. Despite the potential of this novel concept of
transportation, to make UAM a viable option, some unresolved issues must be addressed, such as infrastructures,
traffic management, and public acceptance in terms of environmental pollution and acoustic nuisance. Regarding
this last point, the need to design low-noise vehicles is mandatory because UAM would potentially involve con-
tinuous low-altitude flyovers of cities and densely populated areas, as well as take-off and landing operations in
vertiports located in urban areas. To reduce the acoustic impact of UAM on citizens, many international institu-
tions are putting a great effort into establishing common noise regulations that prescribe maximum noise exposure
levels [1]. To comply with these stringent requirements, it is of primary importance to investigate the mechanism
governing the sound generation and propagation, which, due to the novelty of UAM prototypes, may be influenced
by phenomena that are negligible in the standard medium-long range aviation.

Two main aspects make predicting eVTOLs aeroacoustics challenging. First, they typically operate in condi-
tions where the rotors interact with high turbulent flows. Secondly, the limited blade tip Mach number typical of
these concepts strongly increases the effect of low Reynolds number phenomena [2]. Among them, the broadband
noise due to interaction between the turbulent boundary layer and the trailing edge is recognized as one of the main
causes of rotor noise when operating in homogeneous stationary flows [3]. This broadband noise component is the
result of the pressure fluctuations relating to the turbulent boundary layer scattered by the trailing edge [3]. Several
methodologies are available in the literature to numerically predict this noise component. First, high fidelity CFD
solvers [4] and LB/VLES method [5] coupled with the Ffowcs Williams and Hawkings’ acoustic analogy [6] have
been exploited. Alternatively, fully analytical models can be applied, such as the Amiet model [7], which directly
provides the noise spectrum in the far field starting from the knowledge of the boundary-layer characteristics at the
blade trailing edge. Although less accurate, they represent a numerically efficient alternative to costly high-fidelity
simulations and have been widely used in the literature (see, for instance, [8]). Recently, a more accurate hybrid



analytical/numerical method has been proposed [9], which combines the Amiet model (used to determine the pres-
sure fluctuation over the body surface) and the Farassat 1B formulation for the noise radiation. This approach has
been applied also in [10], where the Amiet model has been coupled with the Farassat 1A formulation to evaluate
the far-field noise.

Here, three numerical methodologies for the evaluation of the trailing edge broadband noise generated by rotat-
ing blades are applied and compared in terms of accuracy and computational cost: i) a fully analytical commonly
applied formulation based on the Amiet model extended to rotating surfaces [7]; ii) a hybrid analytical-numerical
method, already present in the literature [10], in which the pressure distribution over the surface of the blades is
evaluated through the Amiet approach, while the noise is radiated in the far-field through the Farassat 1A formu-
lation [11]; iii) a novel hybrid analytical-numerical method in which the noise is radiated by a compact source
version of the Farassat 1A formulation [12] and the sectional fluctuating load inputs are evaluated by numerical
integration of the pressure distribution over the surfaces provided by the analytical Amiet model.

This last broadband noise evaluation approach represents the major novelty of the proposed paper. The starting
point is the compact source version of the Farassat 1A formulation as derived in [12] for which the sectional loads
are the input data. In general, these can be considered as the superposition of a deterministic contribution, source of
the tonal noise relating to the aerodynamic loads acting on the blade, and a stochastic one, relating to the trailing-
edge scattering of the pressure fluctuations within the turbulent boundary layer. The deterministic contribution is
determined by a quasi-steady blade element theory based on a lookup table approach which accounts for wake
inflow effects. The stochastic contribution is evaluated through the Amiet airfoil self-noise model [7] extended
to rotating blades through a strip-theory approach [13]. For each radial section, the stochastic pressure field is
obtained by the Fourier expansion of the blade pressure waves given in [14]. This can be integrated along the blade
section to obtain the sectional loads to be used as inputs in the compact-source Farassat 1A formulation.

The paper is structured as follows: first, Sec. 2 is addressed at the description of the three approaches herein
applied. Then, in Sec. 3, the results of the numerical investigations are shown. In particular, the proposed method-
ologies are validated against literature results, and the predictions are compared in terms of accuracy and compu-
tational cost. Finally, in Sec. 4 the main outcomes of the work are summarised.

2 Boundary Layer trailing edge noise modeling
The present section addresses the theoretical/numerical description of the methodologies herein exploited, in par-
ticular, the fully analytical approach and the two hybrid numerical-analytical methods based on the combined
application of the Amiet model and the Farassat 1A and its compact source version formulations.

2.1 Fully-analytical model
The analytical model herein exploited is based on the Amiet theory presented in [7] and extended in [15] to account
for the effect of a finite chord length. In a right-hand system of reference centred at the midspan section trailing
edge, having x1 axis aligned with the flow direction, x3 axis perpendicular to the trailing edge and the x1 axis and
positive on the suction side of the wing, the far-field noise Power Spectral Density (PSD) is given by [7]:
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where c and L are the wing chord and span, respectively, c0 is the speed of sound of the undisturbed medium, ω is
the frequency in radians, σ is defined as
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Furthermore, ly denotes the spanwise correlation length, L the acoustic transfer function and Φpp the wall-pressure
power spectral density. Concerning the former, in the present work, the approximated expression of the spanwise
correlation length proposed by Corcos in [16] is used, which reads:

ly(ω) = bcUc/ω (2)

where Uc is the convection velocity and bc is the Corcos model constant.
The acoustic transfer function L is given by the sum of two contributions, L1, given by Amiet in [7], and L2

as defined in [15] which accounts for the back-scattering correction. For the sake of clarity, their expressions are
in the following reported:
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where the symbol E∗ denotes the Fresnel integrals, K̄1 = ω/Uc and µ̄ is the acoustic wavenumber, defined as
µ̄ = K̄1M/β2.

For the evaluation of the wall-pressure power spectral density, several empirical models are available in the
literature, such as the Willmarth and Roos model [17] and the Goody model [18]. In the present work, a modified
version of the Goody model, proposed by Rozenberg in [19], is applied, which accounts for the adverse pressure
gradient. It reads:
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where Ue is the boundary layer edge velocity, δ∗ the boundary layer displacement thickness, τw the wall shear
stress, βc is the Clauser’s pressure gradient parameter. In addition, Π the wake law parameter which can be derived
from the solution of the equation 2Π − ln(1 + Π) = κUe/υτ − ln(δ∗Ue/ν) − 5.1κ − lnκ, with υτ denoting
the friction velocity, ν the kinematic viscosity and κ the von Karman constant, equal to 0.41. The symbol ReT
denotes the friction Reynolds number, and it is defined as ReT = υτδ

√
cf/2/ν, where cf is the friction velocity

coefficient and δ is the boundary layer thickness.
The original Amiet model, namely Eq. (1) is valid for translating wings. Its extension to the case of rotating

surfaces has been derived in [13]. In particular, following a strip theory approach, each blade is split in N strips and,
for each time instant, the spectrum of the noise radiated by each blade segment is given by Eq. (1). Thus, Eq. (1)
has to be intended as an instantaneous spectrum and the final PSD is obtained by summing the contributions of
each segment and each blade and averaging around the azimuth angle. The assumption at the base of this approach
is that the motion of each segment can be assimilated into a translating motion in the direction locally tangent
to the section chord. Thus, for each azimuthal position of the blade segment, Eq. (1) can be applied. Due to
this hypothesis, the relative motion between the source and the observer is neglected, and it is thereafter included
through a Doppler factor correction, which reads [13]:

ω

ωe(Ψ)
= 1 +

Mt · r
1−Mr · r

(6)

where Mt and Mr represent the Mach number of the source relative to the observer and to the fluid, respectively,
while r represents the unit vector from the retarded source position to the observer. Furthermore, ωe is the instan-
taneous emitting frequency which depends on Ψ, the blade angular position. Thus, for each blade segment, Eq. (1)
is evaluated at each blade angular position Ψ and hence at each ωe and the final spectrum is obtained by averaging
over all the angular positions and weighting with the Doppler ratio in Eq. (6), namely:

Spp(Y , ω) =
Nb

2π

∫ 2π

0
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ω
SΨ
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where SΨ
pp is the instantaneous spectrum, to be evaluated by the application of Eq. (1) at each azimuthal position

Ψ, Nb is the number of blades, Y denotes the coordinate of the observer in a system of reference fixed with the
rotor hub while x the coordinates of the observer in the (x1, x2, x3) system of reference.



2.2 Hybrid analytical-numerical models
The hybrid analytical-numerical approach consists of evaluating the pressure distribution over the blade surfaces
through the analytical Amiet formulation, whereas the radiation in the far field is performed numerically through
the Farassat 1A formulation or its compact source version. As in the following detailed, the input data for them
are, for the former formulation, the pressure distribution over the blades’ surfaces, and for the latter, the section
force vector associated with the pressure jump over the airfoil. Thus, the starting point for both formulations is the
same: the definition of the pressure distribution over the body surfaces.

Since both the formulations do not make any assumptions about the nature of the pressure or of the associated
sectional loads, they can be used to evaluate both the tonal noise at blade passing frequency harmonics and the
broadband noise caused by turbulence interacting with the blade trailing edges. To this extent, the idea is to consider
the pressure over the surfaces as the superposition of a deterministic contribution, source of the tonal noise and
related to the aerodynamic loads acting on the blade, and a stochastic contribution, related to pressure fluctuations
within the turbulent boundary-layer that are scattered as sound when they pass the trailing-edge. Focusing on
the stochastic contribution, the pressure distribution is evaluated through the Amiet airfoil self-noise model [20]
extended to rotating blades through a strip-theory approach [13]. Following [14], for each radial section, the
stochastic pressure field is obtained by the following Fourier expansion of the blade pressure waves

p(ℓ, τ) = −4π

N∑
n=1

An{Bncos[K̄1,n(ℓ− Ucτ) + ϕn] +Dnsin[K̄1,n(ℓ− Ucτ) + ϕn]} (8)

where N is the number of Fourier components included in the analysis (beyond which the spectrum amplitude
is considered negligible), K̄1,n = ωn/Uc is the n-th spanwise convective wave number and ϕn are independent
random phase angles, distributed in [0, 2π]. In addition, in Eq. (8)
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with C(ξn) and S(ξn) denoting the Fresnel cosine and sine integrals, ϵ is a positive parameter, µn = MK̄1,n/β
2,

and ∆kc = K̄1,n/N . The other symbols are the same already introduced in the previous section.

2.2.1 Farassat 1A formulation

In the Farassat 1A boundary integral formulation [11], the solution of the Ffowcs Williams and Hawkings equation,
the acoustic pressure field is given as the superposition of the thickness noise, p′

T
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and kinematics,
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and the loading noise, p′
L

, related to the distribution of pressure over body surfaces,
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In Eqs. (10) and (11), r denotes the distance between observer position, x, and source position, y, whereas
r̂ = r/r is the unit vector along the source-observer direction, with r = |r|. In addition, c0 and ρ0 are speed of
sound and density in the undisturbed medium, respectively, p̃ = (p − p0) with p0 representing the undisturbed
medium pressure, M = v

B
/c0 with v

B
denoting the body velocity, M = ∥M∥ and Mr = M · r̂. Further, v̇n,

ṅ and Ṁ denote time derivatives of vn, n and M , observed in a frame of reference fixed with the undisturbed
medium. Notation [...]τ indicates that these quantities are evaluated at the emission time, τ = t− θ, where θ is the
time taken by the signal started from y ∈ SB to reach the observer at time t.

As already stated, the pressure distribution p̃ is divided in a deterministic contribution and in a stochastic one.
The former is evaluated through a Boundary Element Method (BEM) aerodynamic solver based on the boundary
integral formulation for potential and incompressible flows [21], while the stochastic contribution is evaluated
through Eq. (8).



2.2.2 Compact-source Farassat 1A formulation

Under the assumptions of negligible blade chord length with respect to the source-observer distance and limited
values of chordwise pressure gradients, the compact-source version of the Farassat 1A boundary integral formula-
tion [22] can be applied. Similarly to the Farassat 1A formulation described in the previous section the aeroacoustic
pressure field is given by the superposition of the thickness and the loading noise terms. For the compact-source
formulation, the latter is associated with the blade sectional loads instead of the pressure distribution over the
surface. Starting from the 1A Farassat formulation, assuming a slander rotor blade, the thickness term can be
expressed as a combination of line integrals along the spanwise quarter-chord line, Ds [23]:

4πp′T (x, t) =

∫
Ds

[
AẆ
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where

W = rṀ · r̂ + c0(Mr −M2)

where A is the blade cross-section area, s is the corresponding (curvilinear) coordinate of integration.
Similarly, the compact version of the loading contribution is given by [22]
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where,

L = −
∫
Dc

∆p n dℓ (14)

is the section force vector, where Dc is the chordwise domain of integration, ℓ is the corresponding (curvilinear)
coordinate of integration, whereas n and ∆p denote upward unit-normal to airfoil mean-line and pressure jump,
respectively. Following the approach above described, the section force vector, L, is conceived as the sum of the
section aerodynamic loads associated with the deterministic pressure jump, Ld, and the stochastic ones Ls (i.e.,
L = Ld + Ls). The deterministic section airloads, Ld, are determined by a quasi-steady blade element theory
based on a lookup table approach, which accounts for wake inflow effects [24]. The stochastic contribution, Ls,
is evaluated through the Amiet airfoil self-noise model [20]. In particular, starting from the expression of the
pressure distribution over the surface, namely Eq. (8), observing that the random phase angles are independent on
the chordwise coordinate, substituting Eq. (8) in Eq. (14), the following expression of the sectional loads associated
with the stochastic pressure jump is obtained:
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c
s,ncos(ϕn − Ucτ) +Ls

s,nsin(ϕn − Ucτ)] (15)
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(16)

Eq. (16) can be integrated numerically to obtain the sectional loads to be given as input to Eq. (13).
It is important to highlight that for the compact-source formulation, the pressure distribution in Eq. (8) has to

be intended as the pressure over the chord mean line. Thus, when the integration of Eq. (16) is performed, the
pressure of Eq. (8) is split half on the suction side and half on the pressure side of the airfoil.



3 Numerical results
The proposed approaches are validated through a comparison with the literature results presented in [8]. The test
case consists of a two-bladed fan in hovering condition, having a radius equal to 400 mm and a rotational speed of
600 rpm. For other details about the configuration, the reader is referred to [8]. The results are shown in terms of
Power Spectral Density (PSD) evaluated assuming the reference pressure equal to 2.10−5 Pa. Furthermore, only
the broadband trailing edge noise contribution is investigated. In particular, in a right-hand system of reference with
origin in the rotor hub, z-axis coincident with the rotational axis, y-axis directed radially and pointing starboard,
the microphone is located at (1.09 m, 0 m, 1.30 m).

First, the fully analytical method (described in Sec. 2.1) is applied. The blade is divided into 7 strips, where
the geometrical characteristics are known, as described in [8] and reported in Tab. 1 for the sake of clarity.

Strip # 1 Strip # 2 Strip # 3 Strip # 4 Strip # 5 Strip # 6 Strip # 7
Radius, r [m] 0.155 0.195 0.235 0.275 0.315 0.355 0.395
Chord, c [m] 0.12 0.12 0.125 0.13 0.13 0.135 0.135

Stagger angle, γ [deg] 47.8 49.7 51.9 53.8 55.6 57.7 59

Table 1: Geometrical data of the blade [8].

To evaluate the trailing edge noise by applying Eq. (1), first, the wall-pressure PSD has to be evaluated. In
this framework, two different approaches have been applied and compared. First, the analytical model in Eq. (5)
is exploited. The standard formulation described in [25] is used to evaluate the boundary layer quantities, starting
from the Reynolds number at each blade section. In particular:

δ∗

c
=

0.0477

Re
1/5
c

cf =
0.0594

Re
1/5
c

τw =
1

2
ρU2cf (17)

where Rec is the Reynolds number based on the chord and the mean velocity. In addition, the convective velocity
and the Corcos constant given in [8] are used. In particular, in the section of the midspan set Uc/U = 0.75 and
bc = 1.56, whereas in the section in the blade-tip set Uc/U = 1.07 and bc = 0.9.

The second approach applied to evaluate the wall-pressure spectrum is based on the experimental measure-
ments reported in [8], suitably extrapolated to the section of interest by assuming the flow to be self-similar. The
predictions obtained with the two approaches are shown in Fig. 1 where a comparison with the experimental and
analytical results in [8] is also reported.

Figure 1: Comparison between the analytical model predictions (blue line with analytical wall-pressure PSD,
black line with the experimental wall-pressure PSD provided in [8]) and the literature results in [8] (green line
experimental data, red line analytical predictions).

This comparison shows that when the wall-pressure PSD is evaluated starting from the experimental measure-
ments, a good agreement with the analytical prediction of [8] is obtained. Indeed, the main trend is well captured,



even if the obtained results exhibit a slightly more wavy behaviour in almost the whole range of frequencies ex-
amined and overestimate the SPL at the lowest frequency (namely f < 103) up to 10 dB. Instead, when the
wall-pressure PSD is evaluated through the analytical relation in Eq. (5), the slope of the curve changes. This
implies that when compared with the analytical results of [8], at the lower frequencies, the far-field PSD is un-
derestimated, whereas the opposite occurs at the highest frequencies investigated (namely f > 3 · 103). Focusing
instead on the comparison with the experimental data, when the experimental wall-pressure spectra are used, an
overestimation of the far-field PSD is obtained which is slightly reduced as the frequency increases. Contrarily,
when the wall-pressure spectra are evaluated through the analytical expression, a better agreement is obtained at
the lowest frequency, but a significant overestimation, up to 8 dB, is observed as the frequency increases. It is
important to highlight that it is a well-known problem the difficulty in reliably numerically predicting the wall-
pressure spectrum, as well as the boundary layer parameters for its evaluation. At the same time, their accurate
estimation is fundamental for a reliable estimation of the radiated noise. Nevertheless, it is beyond the scope of the
proposed research to investigate on the effect of the wall-pressure spectrum PSD. For this reason, in the following,
only the results obtained from the analytical wall-pressure spectra of Eq. (5), with the boundary layer quantities
estimated through the relation in [25], are used.

Then, the two hybrid analytical/numerical methodologies have been applied. The Farassat 1A formulation
(described in Sec. 2.2.1) is applied considering a blade surface discretization with 50 elements along the chord and
30 along the radius. The compact-source Farassat 1A formulation (detailed in Sec. 2.2.2) is applied considering the
blade discretized in 30 sections. Furthermore, 50 elements are considered along the chord to numerically integrate
the pressure distribution and obtain the sectional forces vector, namely to solve Eq. (14). As verified through a
preliminary convergence analysis, these discretizations are sufficient to guarantee solutions that are not affected by
further mesh refinements. For the time discretization, a ∆t = 0.00005s is used for both formulations, whereas the
acquisition period is one rotor revolution.

Figure 2 shows the predictions obtained through the hybrid method based on the noise radiation through the
Farassat 1A formulation and the novel approach based on the compact-source formulation, compared with the
experimental data presented in [8] and the predictions obtained through the fully analytical method, namely Eq. (1).
Note that the predictions through the hybrid approaches have been obtained by averaging five stochastic samples,
namely five different random generator seeds in the evaluation of the surface pressure, namely Eq. (8).

Overall, the results obtained through the novel approach are satisfactory and comparable to those obtained from
the other numerical approaches considered. In particular, the results obtained through the two hybrid numerical-
analytical approaches are in quite good agreement, mainly for frequencies higher than 103. Indeed, at lower
frequencies, the compact Farassat 1A provides a PSD which is about 4 dB lower than the predictions obtained
through the non-compact Farassat 1A. Comparing the hybrid numerical-analytical approaches results with the
fully-analytical one, we observe that the former predict higher SPLs for frequencies lower than 2 · 103, and lower
SPLs for frequencies higher than 5 · 103. Compared with the experimental data, an overestimation of about 6 dB
is observed in almost the whole frequency range considered, which slightly decreases as the frequency increases.

Figure 2: Comparison between the numerical models and the experimental results in [8]



As already highlighted, the differences between the experiments are probably due to the uncertainties in eval-
uating the boundary-layer parameters and the low accuracy of the analytical models used to evaluate the wall
pressure spectra inputs.

4 Conclusion
Three different numerical approaches for the evaluation of the broadband trailing edge noise have been proposed
and compared: a fully analytical approach based on the Amiet theory, widely used in the literature, and two hybrid
numerical-analytical approaches based on the combination of the Amiet theory for the evaluation of the pressure
field over the propeller blades with the numerical radiation in the far-field based on the Farassat 1A formulation
or its compact source version. The latter represents the major novelty of the work. All the approaches have
been validated through a comparison against literature results and experimental data. The level of accuracy of all
the aforementioned approaches is satisfactory. In particular, focusing on the fully analytical approach, when the
experimental wall pressure spectra are used, the outcomes are in very good agreement with the literature results.
Instead, if analytical models are used, some discrepancies arise. In particular, a change in the spectrum slope is
observed, resulting in an underestimation at the lower frequencies and an overestimation at higher ones. Focusing
on the hybrid analytical-numerical approaches, they provide similar results, mainly at frequencies higher than
103 and in agreement with those provided by the fully analytical approach. The major difference resides in the
computational cost. Indeed, the fully analytical model is the fastest one, whereas the hybrid approaches require
a greater computational effort. Using the compact source Farassat 1A reduces the computational time by about
a fifth with respect to the non-compact Farassat 1A. Since the outcomes are in very good agreement, the novel
methodology seems suitable for predicting the radiated noise.
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