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Abstract. With the rapid growth of data volume and the development of artificial intelligence technology, deep-
learning methods are a new way to model land subsidence. We utilized a long short-term memory (LSTM) model,
a deep-learning-based time-series processing method to model the land subsidence under multiple influencing
factors. Land subsidence has non-linear and time dependency characteristics, which the LSTM model takes
into account. This paper modelled the time variation in land subsidence for 38 months from 2011 to 2015. The
input variables included the change in land subsidence detected by InSAR technology, the change in confined
groundwater level, the thickness of the compressible layer and the permeability coefficient. The results show
that the LSTM model performed well in areas where the subsidence is slight but poorly in places with severe
subsidence.

1 Introduction

The continuous over-pumping of groundwater can result in
dramatic drawdown and regional land subsidence, threaten-
ing the living environment. Land subsidence is often related
to anthropogenic factors that can cause economic losses and
casualties, such as municipal infrastructure damage, cracks
in transport facilities, and building fractures.

Land subsidence is a complex process influenced by the
interaction of anthropogenic activities and the hydrogeolog-
ical environment. It often develops unevenly and seasonally
and can display hysteresis depending on the soil mechanical
properties (Ezquerro et al., 2014; Miller and Shirzaei, 2015;
Bonì et al., 2016; Gao et al., 2018; Haghighi and Motagh,
2019).

Previous studies on the mechanism of land subsidence
were based on the well-understood constitutive model, and
the numerical simulation model was established to simu-
late the future displacement. However, explicit description
of hydrogeological information which may have space–time
sparseness is required to do so accurately. This constrains its
application for large areas. The grey model (GM) based on

grey theory is an alternative model to predict the short-term
land subsidence, but it ignores the non-linear characteristic
of land subsidence. Some researchers proposed the modified
GM model combined with artificial neural network (ANN)
or other algorithms to deal with the non-linear features (Li et
al., 2007). These methods can have a good short-term predic-
tion and perform well when data volume is small, while the
deep information cannot be mined when the data volume is
large and cannot be used in long-term prediction.

The long short-term memory (LSTM) model is a deep-
learning method that can process a large volume of time-
series data and forecast the value of the next moment. It con-
structs a multilayer neural network to excavate the tempo-
ral dynamic features of historical data, considering the non-
linearity and temporal dependency characteristics. The pre-
diction period depends on the time interval of the input data.
It has been successfully applied to PM2.5 concentration fore-
casting, which is a temporal–spatial phenomenon (Qi et al.,
2019), but no research used this method to simulate the land
subsidence.

With the rapid growth of land subsidence data volume ob-
tained by InSAR technology, the application of deep-learning
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Figure 1. The location of the study area and land subsidence from
2011 to 2015 derived from RadarSat-2 images (the digital elevation
model data are from the Shuttle Radar Topography Mission – SRTM
– website).

methods of recent studies shows its potential in time-series
land subsidence modelling (Yu et al., 2018). In this paper,
we utilized the LSTM method to model the land subsidence
under multiple influencing factors.

2 Study area and datasets

2.1 Study area

The study area is located in the Beijing Plain, where the
largest cumulative land subsidence from 2011 to 2015 had
been reached at 624.42 mm, as shown in Fig. 1. Due to urban
sprawl and groundwater extraction, land subsidence in Bei-
jing has become a matter of concern and is threatening the
sustainable development of the city.

2.2 Available datasets

As noted in the literature, excessive exploitation of ground-
water is the main trigger of land subsidence, and compress-
ible layers are geologically responsible for the land subsi-
dence in the Beijing Plain region (Zhu et al., 2015, 2017;
Chen et al., 2016). This study considered these two aspects to
be the influencing factors of land subsidence. The available
datasets include the confined groundwater level, the thick-
ness of the compressible layer, the permeability coefficient,
and the cumulative land subsidence from 2011 to 2015 de-
rived from 38 RadarSat-2 descending images. Constrained
by accessible groundwater data, we got 16 487 persistent

Figure 2. Diagram of an RNN network and LSTM computing cell
(from Wikipedia).

scatterer (PS) points. Therefore, we have in total 626 506
samples recording the LOS subsidence and the related in-
fluencing factors to simulate the land subsidence.

2.3 Data processing

The confined groundwater level observed by the monitor-
ing stations was interpolated using the kriging interpolation
method into a raster with a 20m× 20m grid size by a batch
process. The thickness of the compressible layer and the per-
meability coefficient of the study area were both represented
by a contour. So, they were converted into points and inter-
polated using the kriging method. The change in the confined
groundwater level was calculated and used as the input vari-
able of the LSTM model together with the other two factors.
The cumulative land subsidence was also converted into the
variation to eliminate its tendency. All the data were normal-
ized using the min–max scaling method. All these attributes
were extracted to the PS points by a spatial analysis tool in
ArcGIS.

3 Methodology

3.1 InSAR technology

InSAR technology records the phase and amplitude of the
electromagnetic waves of ground objects. The phase infor-
mation is used to inversely determine the extent of land sub-
sidence. PS-InSAR (PSI) is the most common and effective
method for detecting regional time-series land subsidence by
calculating the differential interferometric phase and gener-
ating lots of PS points. PSI technology overcomes the prob-
lems of temporal and geometrical decorrelation and mini-
mizes the atmospheric and noise phase contributions. The
outputs include (1) the coordinates of land subsidence points,
(2) the LOS cumulative land subsidence and (3) the land
subsidence rate. Increasing availability of the long-term and
large amount of land subsidence data detected by InSAR
technology has provided the chance for data-driven mod-
elling.
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Figure 3. The LSTM model structure of this study.

Table 1. Details of the experimental settings.

Parameter Value

Number of records 626 506
Training set 70 %
Test set 30 %
Time series 2010–2015, 38 months
Learning rate 0.001
Batch size 38
Hidden layers 8
Input size 4
Output size 1
Optimization function Gradient descent optimizer

3.2 LSTM algorithm

A RNN (recurrent neural network) is a kind of deep neu-
ral network for processing sequence data considering the im-
pact of last moments on the present. Parameter sharing on
a time domain with a loop structure is its important char-
acter. As shown in Fig. 2a, Xt represents the input char-
acteristics at time t , A is the computing unit which is also
known as the hidden layer, and ht is the output value. The
hidden layer controls the information conversion process of
the sequence data. It fits the mapping relations between the
input multidimensional features and the labels and learns the
weight matrix and bias to calculate the corresponding output
value. However, RNN suffers from vanishing gradient or gra-
dient explosion problems when dealing with long-term time-
series data.

The LSTM proposed by Hochreiter and Schmidhu-
ber (1997) is a computing unit in a RNN structure. It intro-
duced a gating function to avoid the long-term dependency
problem. As shown in Fig. 2b, f t , it , and ot are three non-
linear gate functions and named the forget gate, input gate,
and output gate in each memory block, respectively. The key
to the LSTM is the cell state Ct , which has only a small
amount of linear interaction during the entire operation. It
can effectively record history information for a long time

Figure 4. The distribution of the train and test data (the administra-
tive map is from the Beijing Institute of Geo-Environment Monitor-
ing).

through the three gates. For an input vector xt , the calcu-
lation equations for an LSTM unit with the three gates are as
follows:

f t = σ (Wf · [ht-1,xt ]+ bf), (1)
it = σ (Wi · [ht-1,xt ]+ bi), (2)
ot = σ (Wo · [ht-1,xt ]+ bo), (3)

Ct = f t ×Ct-1+ it × C̃t , (4)

C̃t = tanh (WC · [ht-1,xt ]+ bC), (5)
ht = ot × tanh (Ct ), (6)

where Wf, Wi, Wo, and WC are the weight matrices for input
vectors and bf, bi, bo, and bC are the bias vectors at time t ,
respectively. C̃t is the cell state of xt involving the hidden
state value ht-1 from a previous block at time t-1. Ct is the
current unit state controlled by f t and it . ht is the current
output value controlled by the output gate and the current unit
state. σ and tanh are the activation functions, a non-linear
calculation process.

3.3 Subsidence modelling

The LSTM model structure established in this study was
drawn in Fig. 3. The orange dots are the PS points, which
record the time-series land subsidence derived from synthetic
aperture radar (SAR) images and corresponding attributes
that influence the land subsidence. The green block which
contains the LSTM computing cell is the memory block of
the RNN model. Xt = {V1t , V2t , Vit} are the input data at
time t . Vit is the ith attribute of each PS point at time t . The
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Table 2. The RMSE of the 14 validation points.

Test points P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

RMSE 15.77 13.95 16.69 12.60 15.19 16.07 16.32 11.30 13.49 10.01 5.97 4.48

Figure 5. The fit curve between modelled and InSAR-derived change in land subsidence.

model would extract the characteristics of the multiple at-
tributes through the time-series data from the input samples.

In this study, Xt = {V1t , V2t , V3t , V4t}= {the change in
land subsidence, the change in confined groundwater level,
compressible layer thickness, permeability coefficient}. It
was a four-dimensional vector. The subsidence data were as
the input labels and the attribute data were as the input fea-
tures in the model-learning period. The model simulates the
relationships between the change in subsidence and influenc-
ing factors.

4 Results and discussion

4.1 Experimental settings

The detailed experimental settings are listed in Table 1. The
datasets were randomly divided into 70 % for the training set
and 30 % for the test set to verify the accuracy of the model.
The distribution of these data is shown in Fig. 4. The model
training stage used the sum of variance between the mod-
elled and accurate values to calculate the loss. The gradient
descent optimizer was used for the parameter optimization.
The activation function was the common one Tanh. Limited
by the data volume, the learning rate was set to 0.001 and
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Figure 6. The deviation between the modelled and InSAR-derived
cumulative land subsidence at the last moment.

the hidden layers were set to eight. A higher value can be set
when the data volume is larger.

4.2 Experimental results

We got 13 190 points, in total 501 220 records as the train-
ing data, and 3297 points, in total 125 286 records, to test
the model.

4.2.1 Results of LSTM modelling

To evaluate the performance of the model, 12 PS points were
selected randomly as the validation point (the black triangle
legend in Fig. 1). We compared the modelled land subsidence
with the InSAR-derived results and evaluated the errors with
root-mean-square error (RMSE). As shown in Table 2, the
southern points (P11, P12) with less of a cumulative subsi-
dence have a small error, while those points located in the
severe land subsidence areas (P1, P3, P5, P6, P7) have a
high RMSE.

To evaluate the impact of land subsidence severity on the
model results, we chose P11 and P12 located in the south-
ern area where the subsidence is small, P4 and P10 at the
edges of the subsidence regions and P1 and P7 in the se-
vere land subsidence areas. The fitting curves between the
modelled and InSAR-derived land subsidence of these points
were plotted in Fig. 5.

The results show that the LSTM model performed well in
areas where the subsidence is slight but poorly in places with
severe subsidence.

Overall, the RMSE and MAE are 14.412 and 10.539, re-
spectively. Notably, the results recorded the change in land
subsidence, which means that the RMSE represented the er-
ror of the change in land subsidence.

We calculated the change amount of land subsidence back
to a cumulative quantity to assess the accuracy of the mod-
elled cumulative land subsidence. The RMSE is 67.599. Fig-

ure 6 plotted the deviation between the modelled and InSAR-
derived cumulative land subsidence. The deviation is small
when the cumulative land subsidence is less than 100 mm.
As the land subsidence increases, the deviation increases.

4.2.2 Analysis of the error source

As the results show, the severe land subsidence regions got a
poor fit. These are areas of intense human activities (e.g. ur-
ban construction) and complex hydrogeological conditions,
which are not reflected completely in the model.

There are two main error sources. One comes from inaccu-
rate data and the selection of the input variables. In this study,
we chose the confined groundwater level, the compressible
layer thickness and the permeability coefficient as the influ-
encing factors. The input groundwater level data were inter-
polated by the kriging method which may ignore the influ-
ence of the geological environment. The permeability coef-
ficient has very little impact on the result. The selection of
the input variables should include the main factors that affect
land subsidence, such as the compressibility. These data are
unpublished in our study area. It may be inverse to geotech-
nical test and geophysical methods in the future.

The other comes from the imperfect method. The LSTM
model can process the time-series data well, but cannot deal
with spatial phenomena. However, besides the groundwater
level, the other two factors are almost constant in the time
domain and spatially heterogeneous. This may be solved by
combining the convolutional neural network (CNN) model
which can extract spatial characteristics. In addition, the
LSTM extracts characteristics from data, ignoring the physi-
cal process of land subsidence. This may also reduce its ac-
curacy.

5 Conclusion and future work

This study constructed an LSTM model to simulate the land
subsidence using the PS data detected by InSAR technology.
Three factors were considered, which are the change in con-
fined groundwater level, compressible layer thickness, and
permeability coefficient. The model performed well in the
southern areas where the subsidence is slight but poorly in
the northern places with severe land subsidence. Land sub-
sidence is a temporal–spatial phenomenon, and the LSTM
model is a data analysis method with no consideration of
physical mechanisms. In the future, we should combine the
CNN model to solve the spatial heterogeneity and consider
the physical process such as the consolidation theory in the
model. Compared with the numerical simulation model and
other grey models, this method requires fewer hydrogeologi-
cal parameters and can be used for long-term large-area land
subsidence modelling.
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