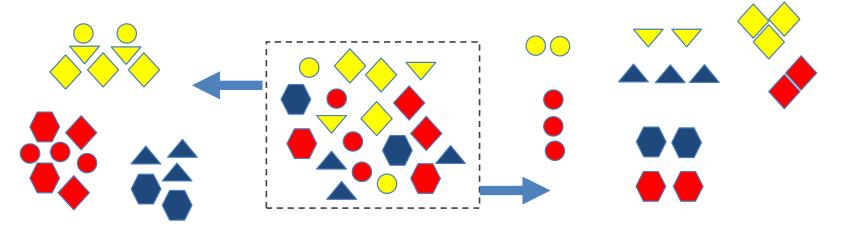
Clinical heterogeneity in Sjogren's disease

Wan-Fai Ng

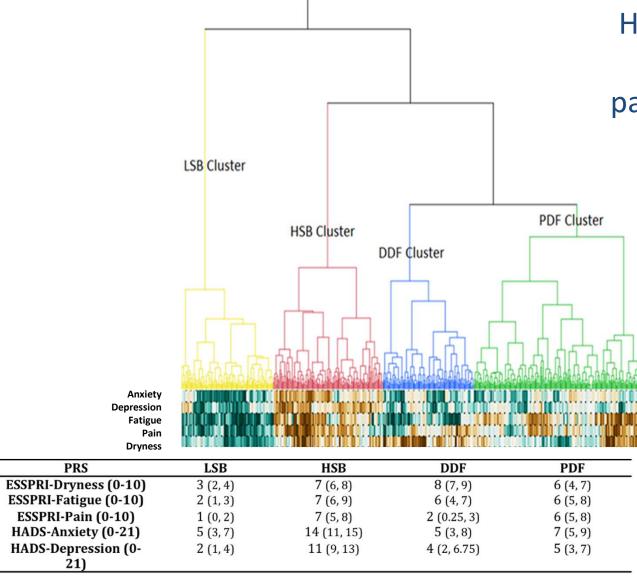

Professor of Rheumatology Newcastle University 20e Groninger Symposium Systeemziekten 2 Feb 2024 (11:05-11:50)

Disclosure slide

Conflict of interests	None / see below
Relevant relationship with companies	Companies
 Sponsoring or research money Fee or other reimbursement 	 Johnsons & Johnsons Bristol Myers Squibb Sanofi Novartis Argenx IQVIA Flagship Resolves Therapeutics

Stratified Medicine in Sjogren's

Why	Heterogeneity (clinical, biological, health economical, attitude to therapies, etc)
Who	Patients, clinicians, scientists, industry, payers
What	Clinical features, pathophysiology, prognosis (e.g. lymphoma development), therapeutic responses
When	At diagnosis, treatment decision, evaluate therapeutic responses/adverse effects
Where	Probably not relevant
How	??

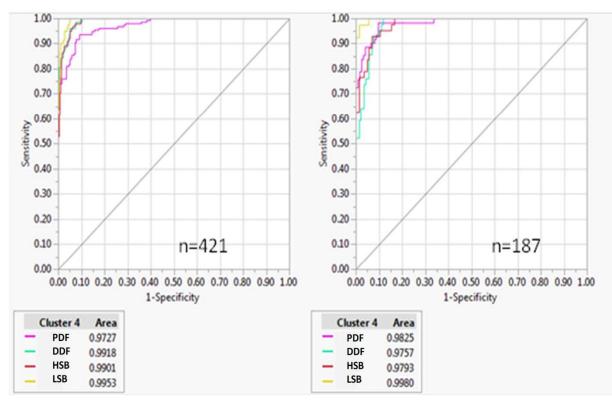

Conventional view of clinical subsets of Sjögren's

- Mainly "glandular" with high levels of pain and fatigue
- "Severe" extra-glandular manifestations such as lymphoma
- But, do all SjD patients belong to either one of these two subgroups?
- No "consensus" on what constitute "severe" extra-glandular manifestations or "mainly glandular features"

L L	Discovery Cohort	Validatio	n Cohorts				
ical icatio	UKPSSR	ASSESS	Stavanger				
Clinical Stratification	Patient reported symptoms	Patient repor	ted symptoms				
Sti	Candidate cl	inical Subtypes					
	Clinical & Standard Laboratory parameters	Clinical & Standard	Laboratory parameters				
Endotype Discovery	Serum Biomarkers (FLC, b2m, CXCL13) Target organ pathology	Serum I	Biomarkers				
Enc	Transcriptomics	Transc	riptomics				
onal nce	Reanalysis of publish	ed clinical trials					
Translational Significance	Health econom	ic analysis					
Tran Sigr	Longitudinal/Outo	ome analysis	Longitudinal/Outcome analysis				

Cohort characteristics

	UKPSSR	ASSESS	Stavanger
Sample size	608	334	62
Median Age (Years)	61	58	62
Female (%)	95	93	82
BMI	25.8	23.4	24.7
AECG duration (years)	5	5	11
ESSDAI (median)	3	3	5
ESSPRI (median)	5.7	5.3	6.0


Hierarchical cluster analysis of five key symptoms of SjD patients reveals 4 main clusters

LSB – Low symptom burden
HSB = High symptom burden
DDF = Dryness Dominant with fatigue
PDF = Pain dominant with fatigue

Model development and validation

Validation Set

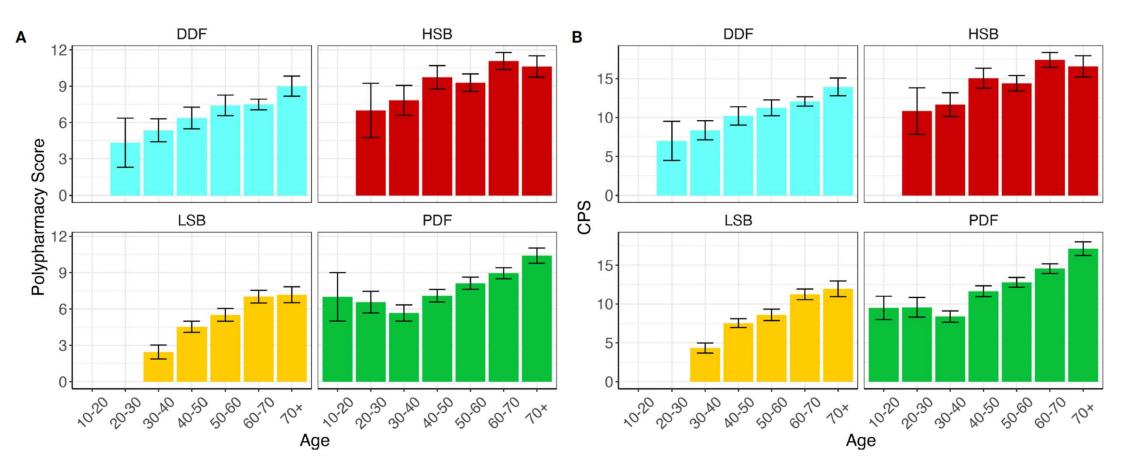
Area Under the Curve (AUC) for the ROC curves >0.95 for all four groups

Newcastle Sjögren's syndrome Stratification Tool (NSST)

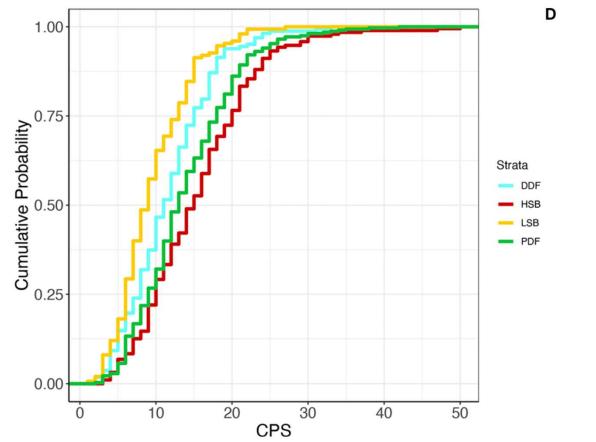
Differences in clinical parameters

Parameter	Cohort	LSB	HSB	DDF	PDF	P value
USF	UKPSSR	0.4	0.2	0.05	0.3	0.0097
	ASSESS	0.26	0.4	0.002	0.22	<0.0001
	Stavanger	1.65	0.8	0.2	0.9	0.1212
	Combined	0.3	0.25	0.005	0.3	<0.0001
Schirmer's	UKPSSR	3	3	2	4	0.0136
	ASSESS	5.25	5.75	7	7.75	0.2644
	Stavanger	7	6.75	1.5	5.5	0.0240
	Combined	3.9	5	2.3	5	<0.0001
ESSDAI	UKPSSR	2	4	4	4	0.0193
	ASSESS	3	5	5	5	0.8902
	Stavanger	3	3	3	3	0.8824
	Combined	2	3	4	4	0.4183

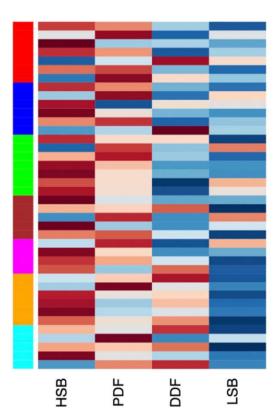
No differences in age, gender, symptom duration, disease duration


Differences in "routine" clinical laboratory parameters

Parameter	Cohort	LSB	HSB	DDF	PDF	P value
Lymphocytes	UKPSSR	1.2	1.5	1.27	1.32	<0.0001
	ASSESS	1.32	1.48	1.18	1.48	0.0251
	Stavanger	1.35	1.9	1.2	1.8	0.0303
	Combined	1.25	1.5	1.2	1.4	<0.0001
lgG	UKPSSR	17.97	14.1	16.63	14.35	<0.0001
	ASSESS	15	12.8	15.2	12.45	0.0028
	Stavanger	13.95	13.4	15.95	11.7	0.0054
	Combined	16.6	13.4	15.95	13.1	<0.0001
SSA/SSB	UKPSSR	93	87	94	85	0.0238
	ASSESS	70	59	74	54	0.0490
	Stavanger	90	60	100	59	0.0018
	Combined	85	75	89	72	0.0001


No differences in CRP and ESR

Differences in serum protein markers


Parameter	Cohort	LSB	HSB	DDF	PDF	P value
Log к-FLC	UKPSSR	3.2	3.06	3.25	3.08	0.0336
	ASSESS	2.8	2.72	2.89	2.59	0.0106
Log λ-FLC	UKPSSR	2.94	2.86	3	2.86	0.0485
	ASSESS	2.75	1.69	2.78	2.63	0.3375
Log 62m	UKPSSR	1.34	1.3	1.38	1.32	0.0336
	ASSESS	1.2	1.14	1.25	1.12	0.0031
Log CXCL13	UKPSSR	4.86	4.97	5.33	5	0.04
	ASSESS	4.74	4.93	4.98	4.48	0.001
Lymphoma (%)	UKPSSR	1.6	5.6	11.2	2.6	0.0113

Tarn JR et al, 2022. Front Immunol.

С

Cardiovascular Gastrointestinal Musculoskeletal Other Renal Respiratory Skin

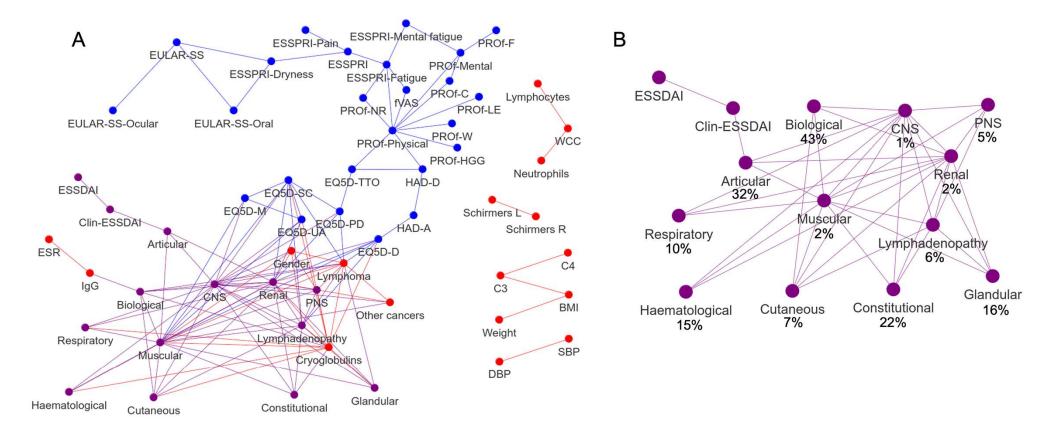
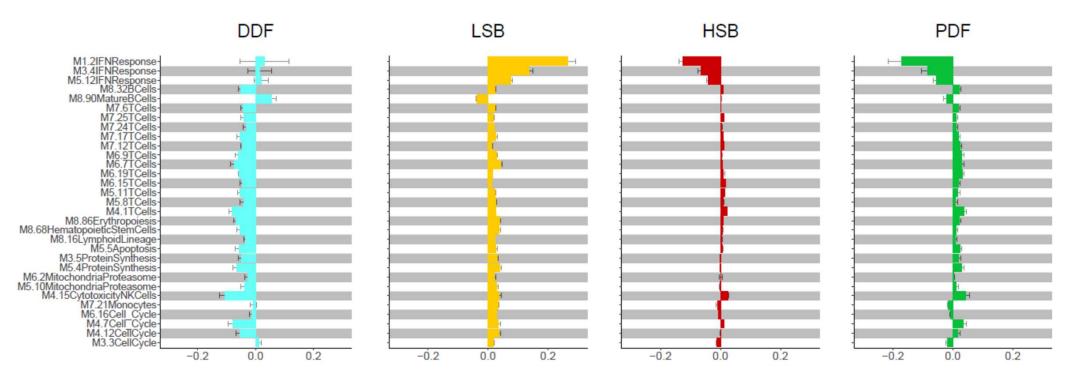
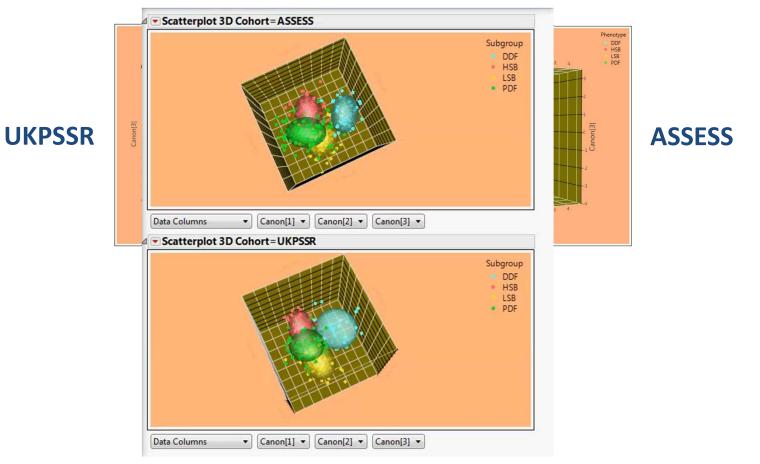


Figure 1. A) ARACNE Clinical network reconstruction for a cross-sectional dataset of 624 patient reported outcome measures and objective clinical and laboratory observations in SS. Edges between nodes represent shared information between the nodes. B) Sub-network of the ESSDAI subdomains showing the connections between them. Percentages in brackets represent the proportion of non-zero scores for each domain.


Tarn JR et al. (accepted).

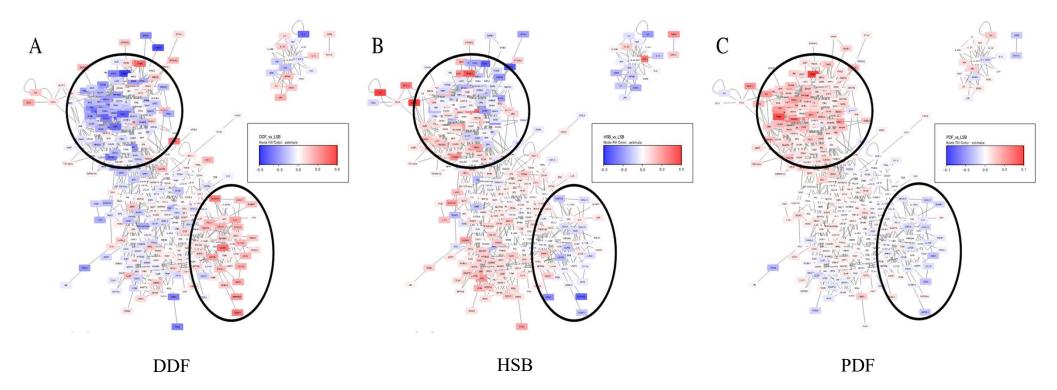
Molecular profiles of the NSST subtypes

Approaches


- Peripheral blood transcriptomic profiles
- Serum proteomic profiles

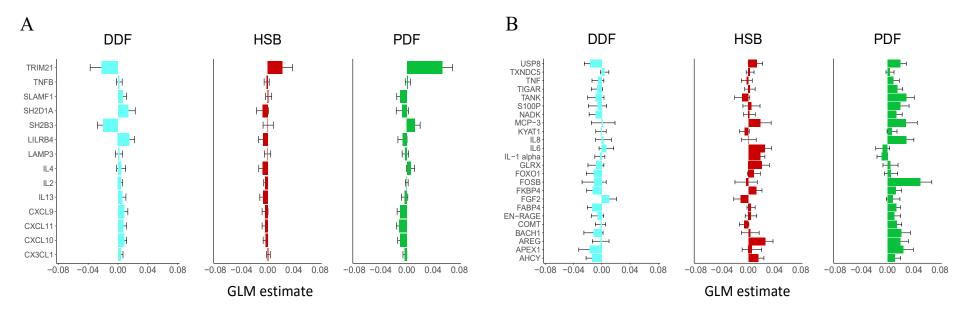
Transcriptomic profiles of the NSST subtypes are distinct

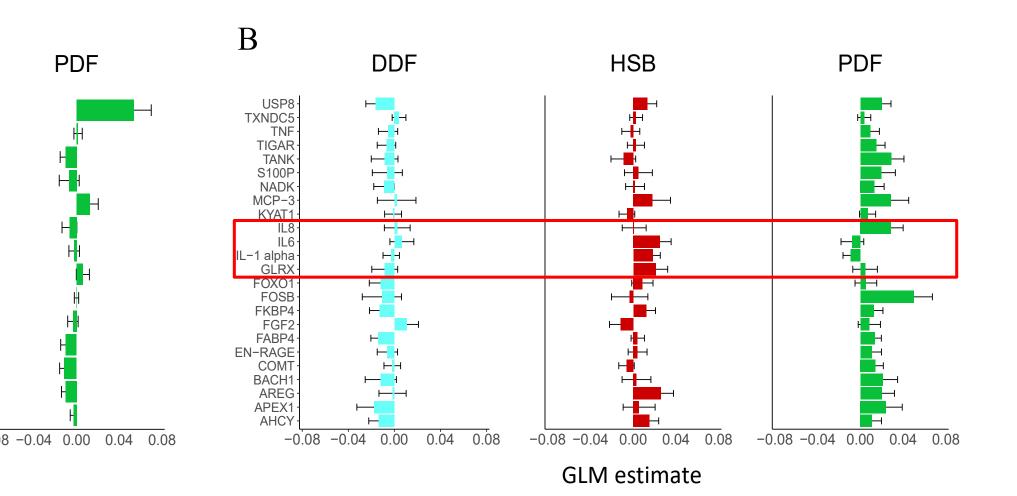
Differentially expressed transcriptomic modules

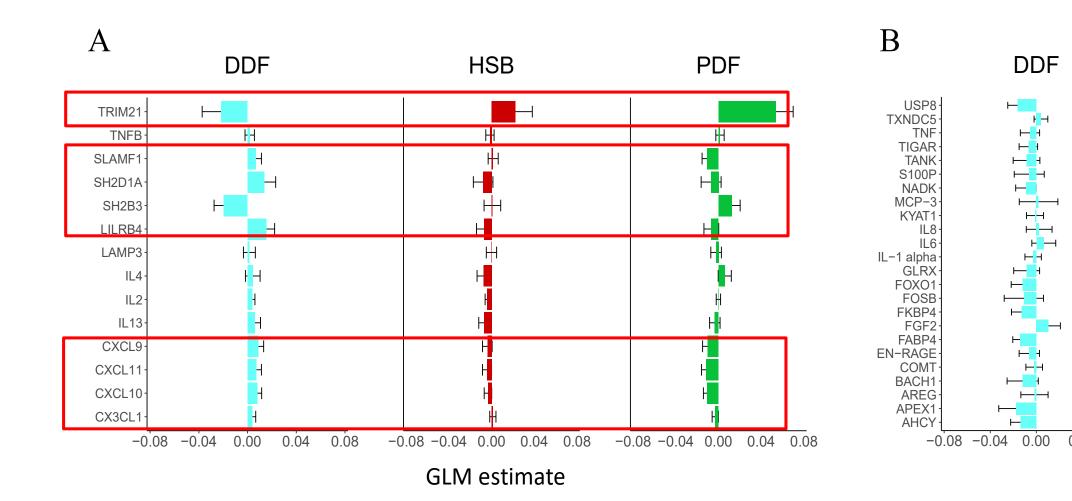

Transcriptomic profiles of the 4 NSST subtypes are similar in independent cohorts and distinct from each other

Serum proteomic profiles

- Profiled serum proteins of 180 SS patients from the UKPSSR (45 from each subtype)
- Five O-Link proteomics panels included a total of 454 unique proteins
- Network reconstruction using ARACNE algorithm (*Margolin AA et al, 2006*) using all patients
- Differential expression estimates were overlaid on these networks to highlight subnetworks of differential expression


O-link ARACNE Network


Nodes represent individual proteins and edges the mutual information between them. Node color represents differential protein expression (Using LSB as a comparator)


Black ellipses highlight subnetworks with differential protein expression between the subtypes.

Protein expression between subtypes

- A. Selected proteins from the inferior subnetwork showing differences in inflammatory cytokines and chemokines associated with the DDF subtype
- B. Selected proteins from the superior subnetwork showing the major differences associated with the DDF, HSB, and PDF subtypes.

Examples of "hub" proteins

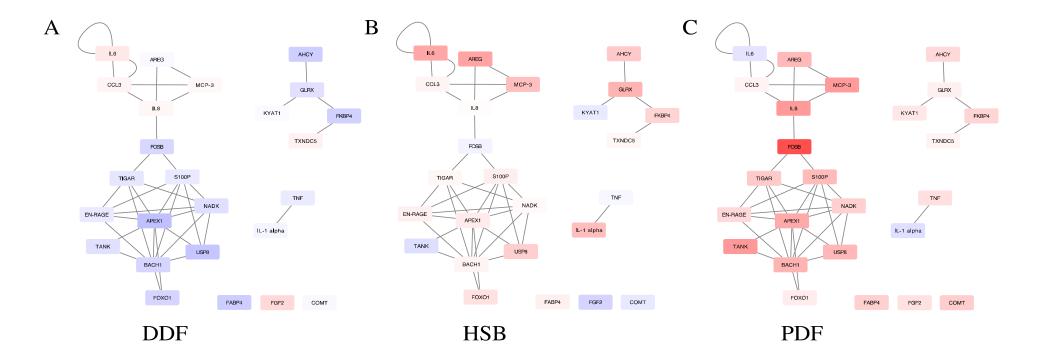
RCOR1	HDGF	USP8	NADK	NUB1	TIGAR
NBN	RNASE3	RASSF2	NCF2	DFFA	TANK
AZU1	МАХ	FGR	TRAF2	CAPG	ARG1
EGLN1	FOXO1	BACH1	TOP2B	PSIP1	PXN
S100P	EN-RAGE	CASP-8	SERPINB8	RRM2B	PAG1
PPP1R9B	MVK	PPP1R2	PIK3AP1	IRF9	мро
HCLS1					
HCLSI					APEX1

DDF

В

RCOR1	HDGF	USP8	NADK	NUB1	TIGAR
NBN	RNASE3	RASSF2	NCF2	DFFA	TANK
AZU1	МАХ	FGR	TRAF2	CAPG	ARG1
EGLN1	FOXO1	BACH1	TOP2B	PSIP1	PXN
\$100P	EN-RAGE	CASP-8	SERPINB8	RRM2B	PAG1
PPP1R9B	MVK	PPP1R2	PIK3AP1	IRF9	мро
HCLS1					
					APEX1

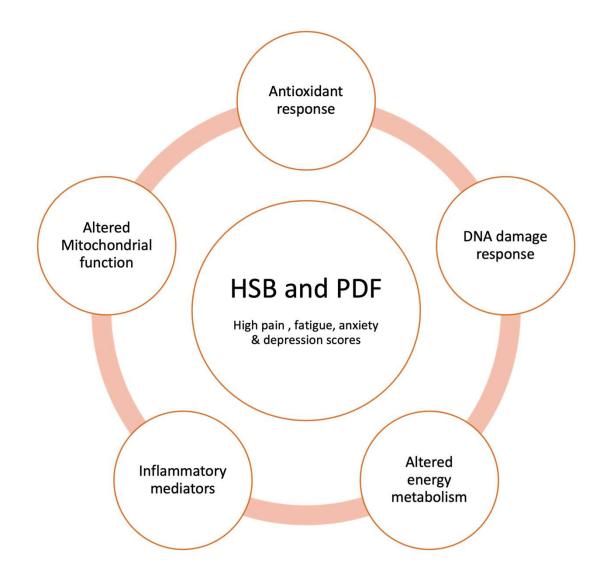
HSB


С

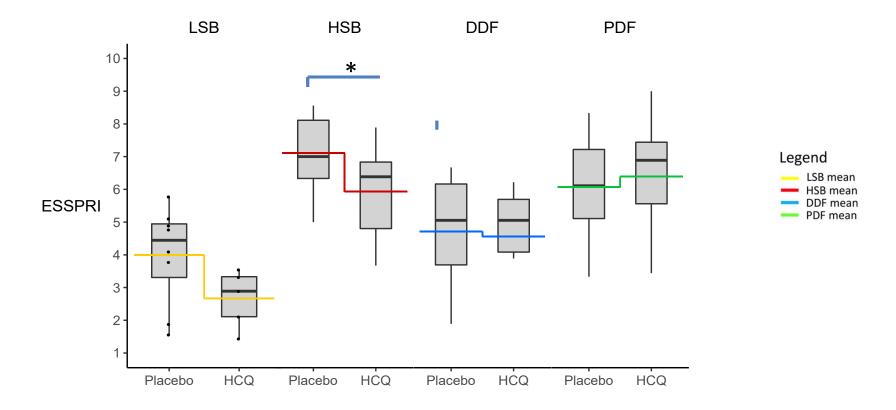
RCOR1	HDGF	USP8	NADK	NUB1	TIGAR
NBN	RNASE3	RASSF2	NCF2	DFFA	TANK
AZU1	МАХ	FGR	TRAF2	CAPG	ARG1
EGLN1	FOX01	BACH1	TOP2B	PSIP1	PXN
\$100P	EN-RAGE	CASP-8	SERPINB8	RRM2B	PAG1
PPP1R9B	MVK	PPP1R2	PIK3AP1	IRF9	мро
HCLS1					
					APEX1
DDE					

PDF

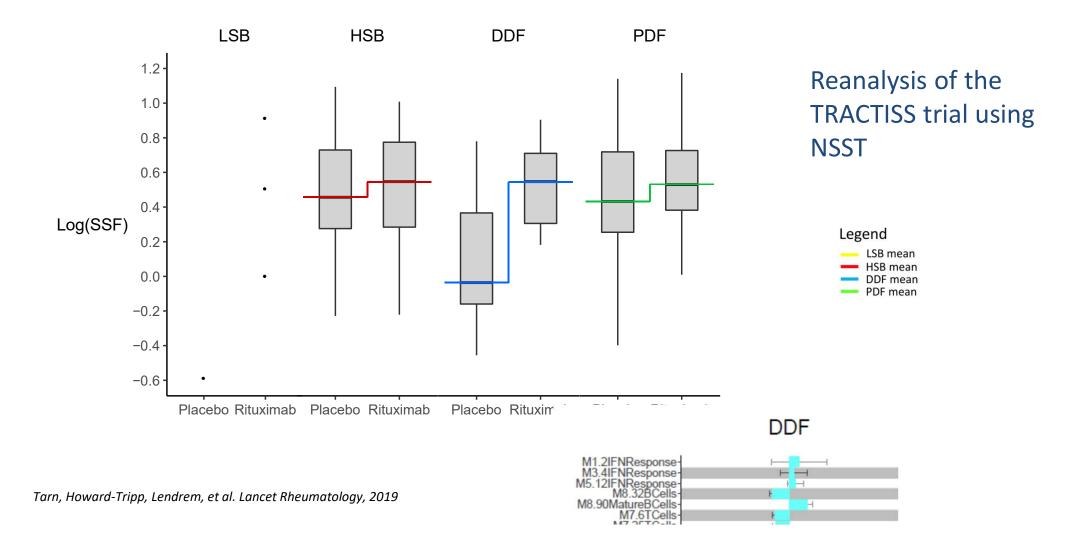
APEX Nuclease (Multifunctional DNA Repair Enzyme)


Examining the superior subnetwork

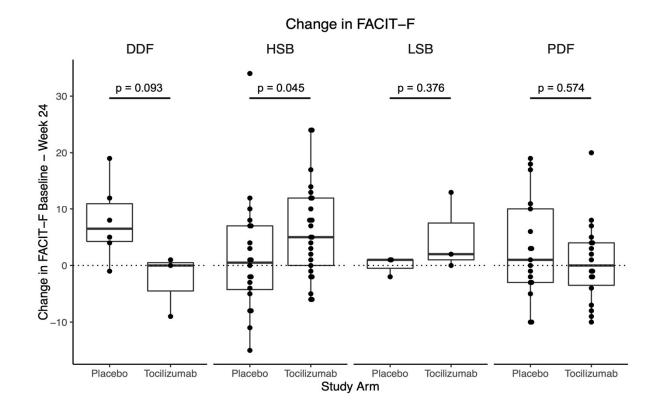
Selected proteins from the superior subnetwork showing the major differences in expression between the subtypes. Transcription factors such as APEX1, BACH1, TIGAR and FOXO1 demonstrate significant influence within the network.


Functional proteomic profiles of SS subtype

DDF	HSB	PDF
Glandular dysfunction & B-cell hyperactivity	Inflammation, antioxidant response & altered cellular metabolism	Inflammation, antioxidant response & altered cellular metabolism
Increased expression of IFN-γ induced chemokines (CXCL9, CXCL10, CXCL11) Increased expression of chemokines associated with ELS (CXCL19, CXCL13, CX3CL1)	Increased expression of proteins associated with inflammation and innate immune response, oxidative stress response (GLRX, NADK, AHCY), and DNA repair (APEX1, TIGAR) Increase expression of transcription factors	Increased expression of proteins associated with inflammation and innate immune response, oxidative stress response (GLRX, NADK, AHCY), and DNA repair (APEX1, TIGAR, HEXIM1, NBN)
Increased expression of B-cell stimulating cytokines (IL-2, IL-4, IL-10, IL-13, TNFB)	affecting energy metabolism (APEX1, TIGAR, FOXO1, BACH1)	Increase expression of transcription factors affecting energy metabolism (APEX1, TIGAR, FOXO1, BACH1)
Highest IFN module activity score	High levels of IL-6 and IL-1a	Low levels of IL-6 and IL-1a
Lowest level TRIM21 with highest Anti-SSA positivity	Altered neuroimmunendocrine pathways associated with anxiety and depressive symptomatology (KAT1, COMT, IL-6, FGF2, FKBP4)	High levels of FOSB


Translational potential of the NSST subtypes

Differential response of SjD subtypes to hydroxychloroquine



Reanalysis of the JOQUER trial using NSST

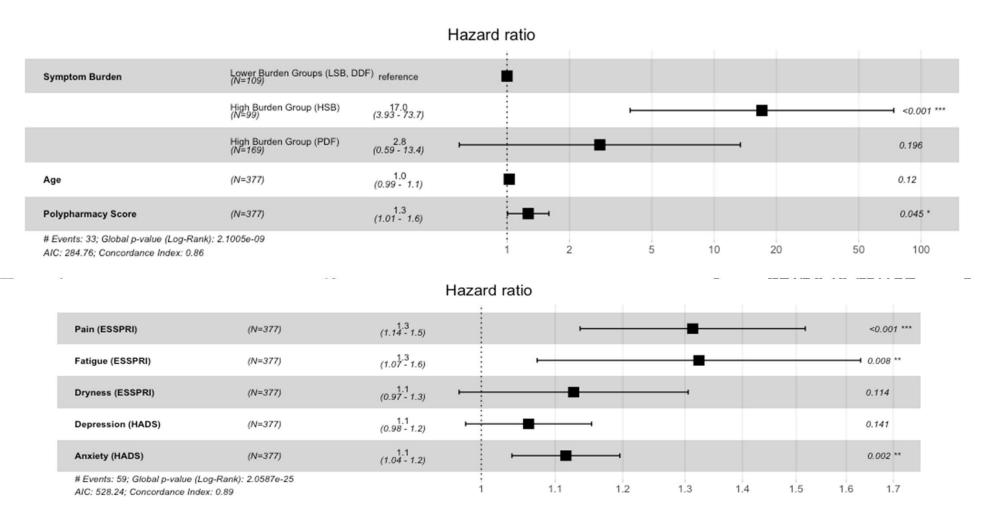
Differential response of SjD subtypes to rituximab

Reanalysis of the phase 3 Tocilizumab trial

DDF: N=8 (PBO 5, TOC 3) HSB: N=50 (PBO 20, TOC 30) LSB: N=6 (PBO 3, TOC 3) PDF: N=39 (PBO 20, TOC 19)

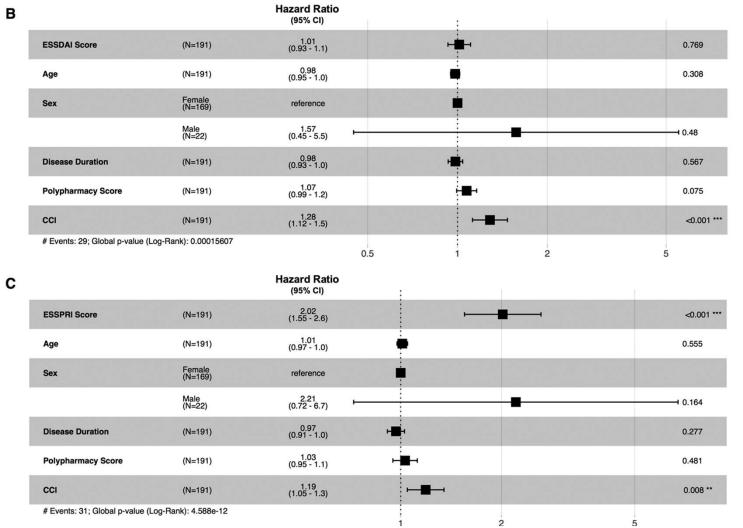
Stratified reanalysis of the Tocilizumab clinical trial (Felten R et al, 2021) using the four NSST symptom-based subgroups

NSST subtypes and health-related quality of life of Sjögren's patients – longitudinal data


- EQ-5D is a standardized instrument for the measurement of health outcomes.
- Used in cost-utility analyses for interventions / Quality Adjusted Life Years (QALY).
- 2 part questionnaire:
 - 1. Assess quality of life on 5 dimensions:
 - Mobility
 - Self-care
 - Usual Activities
 - Pain/discomfort
 - Anxiety/depression
 - 2. Global health state scale (0-100):
 - worst imaginable -> best imaginable health state
- A "Time Trade Off (TTO)" score ranging from -1 to +1 can be generated
 - 1 = best imaginable health state, 0 = rather be dead, <1 indicated health state worse than dead
- An EQ-5D TTO score of <0.5 is considered poor

Longitudinal data on QoL- survival analysis

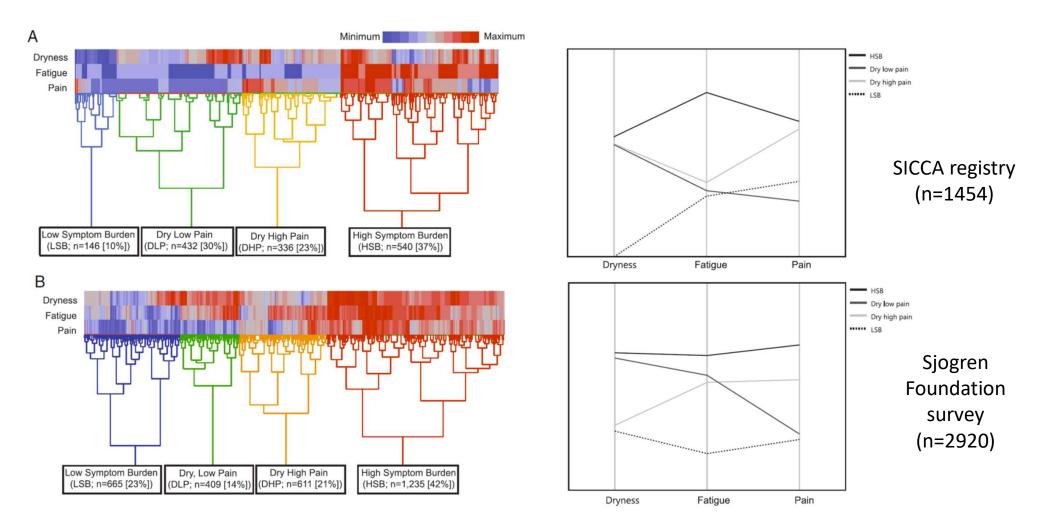
- Longitudinal EQ-5D-3L data from the Newcastle SjD cohort
- n = 377, median follow up time of 6.35 years
- Survival analysis / time-to-event analysis
 - The follow up time at which EQ-5D TTO ≤ 0 was recorded as an 'EQ-5D event'.
- How does quality of life differ between SjD clinical parameters?
 - Symptom burden (including NSST subtypes)
 - SjD outcome measures ESSDAI, ESSPRI
 - Demographics
 - Comorbidity


Tarn JR et al, 2022. J Intern Med.

Symptom burden strongly predicts EQ-5D decline

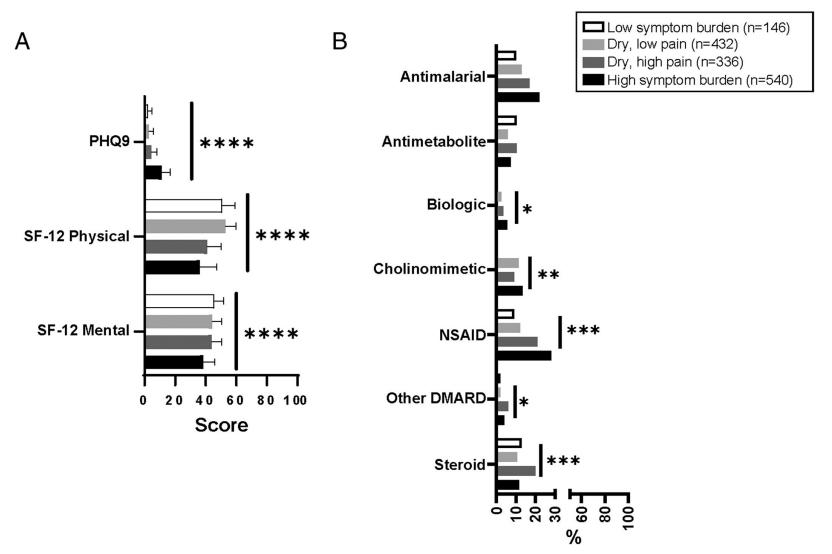
Tarn JR et al, 2022. J Intern Med.

Disease activity and other factors are poor/weak predictors of EQ-5D decline

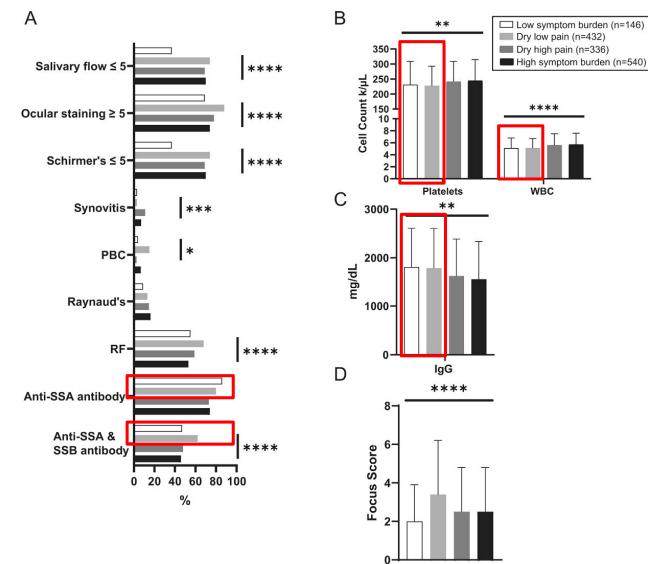


Tarn JR et al, 2022. J Intern Med.

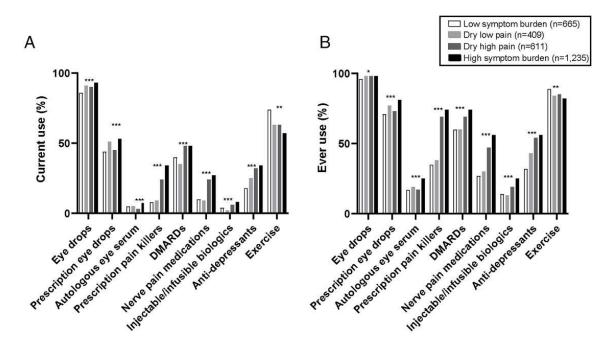
Conclusions

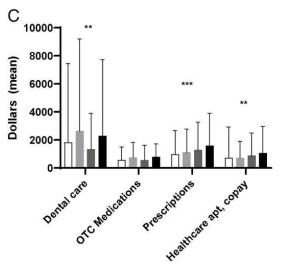

- Sjögren's can be stratified into distinct subtypes based on their symptom profiles
 - This stratification approach (NSST) is simple and can be done at the bedside
- These NSST subtypes have distinct laboratory and transcriptomic profiles
- The NSST subtypes may respond differently to therapies

Other clinical stratification approaches



Hierarchical cluster analysis


McCoy SS et al, Arthritis & Rheumatol, 2022



McCoy SS et al, Arthritis & Rheumatol, 2022

McCoy SS et al, Arthritis & Rheumatol, 2022

Dryness - weighted composite score of responses to 5 questions
Pain - 5-point Likert scale from "not at all" to "extremely,"
Fatigue - 4-point Likert scale from "not at all" to "nearly every day"

McCoy SS et al, Arthritis & Rheumatol, 2022

Other symptom-based subtypes

- Korean Initiative Sjogren's syndrome (KISS)
- Five (? Four) symptoms:
 - ESSPRI Dryness (0-10), >5 as cut-off
 - ESSPRI Pain (0-10), > 3 as cut-off
 - ESSPRI Fatigue (0-10), > 7 as cut-off
 - EQ-5D* Anxiety/Depression, \geq 3

	Class 1 Dryness dominant (n=66)	Class 2 High symptom burden (n = 134)	Class 3 Low symptom burden (n=121)	Р
Pain	0 [0–3]	5 [4–7]	2 [0–3]	< 0.001
Fatigue	5 [4–6]	7 [6–8]	5 [3–5.5]	< 0.001
Dryness	8 [8–10]	8 [7–9]	5 [5–7]	< 0.001
Anxiety/depression	2 [1, 2]	3 [2, 3]	2 [1, 2]	< 0.001
Schirmer's test (OD)	n = 62 3 [1.75-5]	n = 112 4.5 [2-8]	n = 104 3.5 [2.25-7]	0.006
OSS (OD)	4 [2–6.25]	3 [1–5]	3 [1–5]	0.004
OSDI	35 [21.5–56.5]	48 [32–64]	28 [14–43]	< 0.001
uSFR (mL/5 min)	n = 46 0.1 [0-0.25]	n = 97 0.1 [0-0.4]	n = 89 0.25 [0.1-0.5]	< 0.001
sSFR (mL/5 min)	n=40 1.5 [0.85-4.38]	n=83 2.8 [1.5-5]	n = 70 2.75 [1.15-6.05]	0.091
Fibromyalgia	1 (1.5%)	12 (9.0%)	3 (2.5%)	0.021
Peripheral neuropathy	3 (4.5%)	25 (18.7%)	7 (5.8%)	0.001
Cryoglobulin positivity	n = 63 2 (3.2%)	n = 130 1 (0.8%)	n = 113 0 (0%)	0.116

Table 1 Baseline demographic and clinical characteristics of each class

Latent class analysis (n = 341)

Lee JJ et al, J Transl Med, 2021

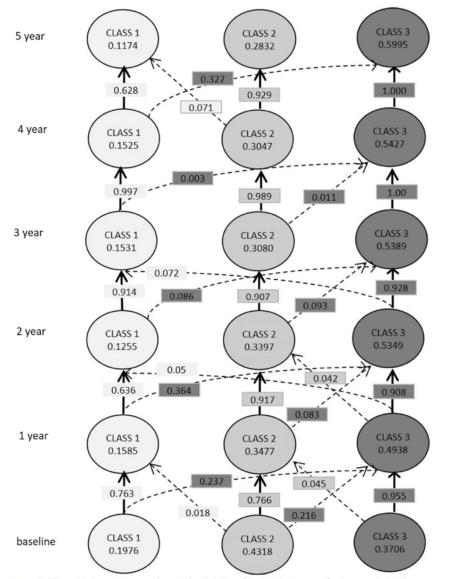
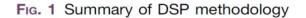
	Class 1 Dryness dominant (n=66)	Class 2 High symptom burden (n=134)	Class 3	Р
			Low symptom burden	
			(n=121)	
Pain	0 [0–3]	5 [4–7]	2 [0–3]	< 0.001
Fatigue	5 [4–6]	7 [6–8]	5 [3–5.5]	< 0.001
Dryness	8 [8–10]	8 [7–9]	5 [5–7]	< 0.001
Anxiety/depression	2 [1, 2]	3 [2, 3]	2 [1, 2]	< 0.001
Arthralgia/arthritis	13(19.7%)	81 (60.4%)	50 (41.3%)	< 0.001
Cutaneous involvement	6 (9.1%)	28 (20.9%)	13 (10.7%)	0.027
ESSPRI	5 [4.3–5.7]	6.7 [6-7.7]	4 [3-4.7]	< 0.001
ESSDAI	3 [1–6]	4 [2-8]	3 [1–5.75]	0.03
Articular	0	0[0-1]	0	0.004
PNS	0	0	0	0.027
Corticosteroid	24/66 (36.4%)	63/134 (47.0%)	33/121 (27.3%)	0.0049

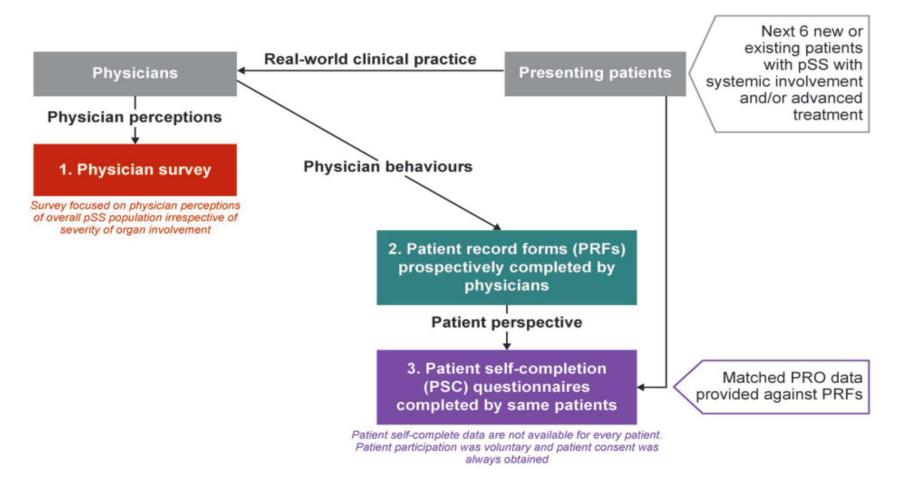
 Table 1
 Baseline demographic and clinical characteristics of each class

• Low C3 level was more frequently found in dryness dominant group (24.6% vs 18.5% (high symptom burden) vs 10.7% (low symptom burden, p=0.041)

• HSB group was more frequently treated using NSAIDs (18.7% vs. 4.5% (DD) and 13.2% (LSB), p=0.024)

Lee JJ et al, J Transl Med, 2021

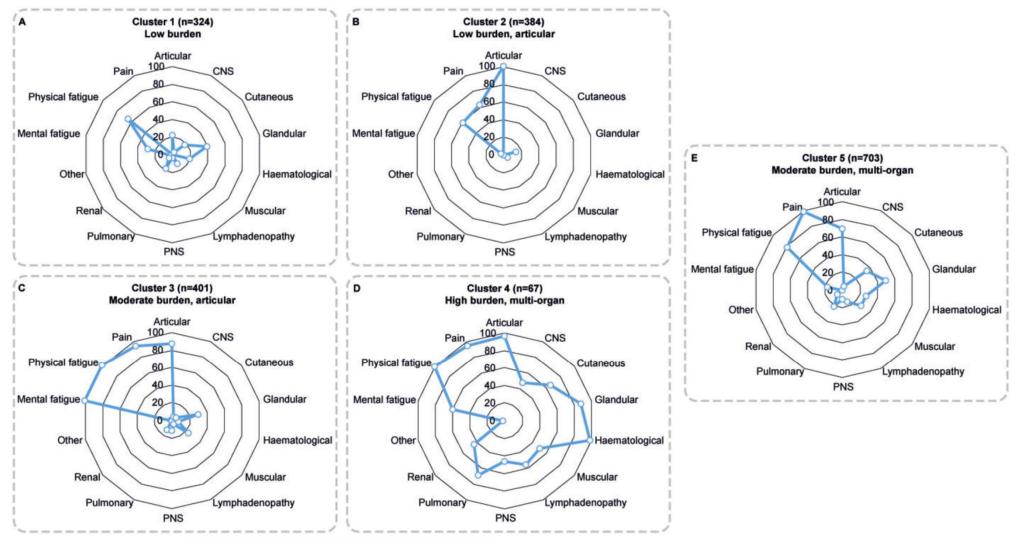

Fig. 2 Transition probability matrix. Latent status prevalence and probabilities of transitioning into specific classes are depicted

Lee JJ et al, J Transl Med, 2021

Other "clinical" stratification

- Cross-sectional survey "real world data"
- 5 countries (France, Italy, Spain, Germany, US)
- Eligibility: Adults with pSS <u>and current or past systemic disease</u> activity <u>according to physician opinions</u>.
 - Not all SS included
 - Diagnosis is clinically based
- 316 physicians, 1879 patient record forms, 888 patient-completed PROs
- Latent class analysis

DSP: Disease-Specific Programme; PRO: patient reported outcome; pSS: primary Sjögren's syndrome.


Variables included in the first model of the latent class analysis

- Patient demographics, age, gender, BMI, employment status
- Current signs and symptoms (sicca, pain, fatigue and organ involvement) and severity of involvement
- Objective test results (unstimulated/stimulated salivary flow rate, Schirmer's test result, serum anti-SSA/Ro positivity, serum anti-La/SSB positivity, complement levels [C3 and/or C4])
- Time to onset of organ involvement
- Time between first symptoms and diagnosis
- Time since diagnosis
- Physicians' Global Assessment of disease activity
- Physician assessment of disease progression
- Concomitant conditions
- Treatment response
- Satisfaction with treatment

Variables included in the final model of the latent class analysis

- Type of organ involvement,
- Presence of pain (at the time of the survey)
- Presence of fatigue (at the time of the survey)
- Duration of the pSS diagnosis was retained
 - to aid interpretation of crosssectional dataset.

Choice of cluster solution was based on the Bayesian information criterion and clinical input.

Gairy K et al, Rheumatol, 2021

Conclusions

- Clinical stratification of SjD may have important role in understanding disease pathogenesis, therapeutic development and clinical management
- Different approaches have been described, each approach may have their merits in different contexts of utility

danken

Patients & healthy volunteers

Newcastle Sjogren's Group

Jessica Tarn Dennis Lendrem Joe Berry Karl Wood Nadia Howard-Tripp Emmanuella Traianos Sheryl Mitchell Ben Hargreaves David Storey James Locke Christine Downie Alexis Collins Katherine James Victoria Macrae Sheryl Mitchell Ben Hargreaves Kristen Davies Jade Walton Sarah Legg

> Also: Clare Lendrem Andrew Skelton Graham Smith John Casement Peter McMeekin

Thank you....

Newcastle Musculoskeletal CLRN Newcastle Biomedical Research Centre

NHS National Institute for Health Research