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Abstract 
After the discovery of the Groningen gas field in 1959, land subsidence due to gas production was 

recognized as a potential threat to water management in the Province of Groningen. During the 60 

years of gas production from the field, the cemented reservoir sandstone has compacted with tens of 

centimetres due to the decrease of the pressure. The resulting land subsidence has been monitored 

frequently over the past 60 years by geodetic measurements (optical levelling, InSAR, GNSS). In this 

study, subsidence models were calibrated using a Bayesian Monte Carlo-Markov chain approach. 

Subsidence forecasts are based on the short-term production scenarios, the long-term pressure 

equilibration phase in the gas field and connected lateral aquifers. 

Introduction 
The Groningen gas field is the largest gas field in Europe with a gas volume of around 2900 billion cubic 

meters (De Jager and Visser, 2017). A large part of the Groningen province lies below the sea level, an 

area that requires active water management. Significant compaction and subsidence due to gas 

production can be regarded as a threat to constant groundwater levels with possible consequences 

for land usage and infrastructure like dikes and bridges. Large additional subsidence volumes require 

additional efforts from water boards to preserve the usage of the land as it is today.  

This subsidence threat has long been recognised, which resulted in many studies (e.g., van Thienen-

Visser and Fokker, 2017 and van Eijs and van der Wal, 2017). These studies all had the objective to 

match a geomechanical model to the available geodetic data. Subsequently, the history matched 

model is then used for forecasting the future subsidence.  

Besides the impact on groundwater levels, reservoir compaction has also been correlated to the 

occurrence of induced seismicity (Bourne et al. 2014). Although induced seismicity is mainly caused 

by poro-elastic effective stress changes, it is observed that the highest frequencies and magnitudes of 

earthquakes occur in areas where the compaction is highest. Because of the seismic activity, the 

minister of Economic Affairs and Climate Policy decided to end the production from the Groningen 

field in 2022. This decision will stop further depletion of the main reservoir layer and hence subsidence 

of the field at large. However, it does not imply that further compaction and subsidence will cease 

immediately. Both visco-plastic compaction and pressure redistribution will lead to moderate 

amounts of further subsidence above the gas field. Another potential source for further compaction 

is the pressure decline in the aquifers that are laterally connected to the gas field. Because there are 



no wells in these aquifers, the pressure cannot be measured directly and can only be estimated from 

calibration and/or inversion of the geodetic data. 

Methods 
There are multiple possibilities to calibrate a model to measured data. In the past, deterministic 

models were manually fitted to the data. These methods are prone for non-uniqueness and often lack 

a proper quantification of the uncertainty. A stochastic approach would circumvent these drawbacks 

where data is used to find both the optimal match and its uncertainty. In this study, analytical and 

therefore fast models are used in the statistical methodology for matching and forecasting the 

subsidence above the Groningen field. This method is described in detail by Bierman and Towe (2020). 

The method distinguishes the model uncertainty (Σ𝑒𝑚𝑝) and geodetic measurements uncertainty 

(Σ𝑔𝑒𝑜𝑑) that in total provide a description of the prediction interval. The probability is based on the 

goodness of fit expressed by the value for the negative log-likelihood (NLL). 

Furthermore, the workflow is designed to address the following additional questions: 

• Can we find properties, based on well or seismic data, that correlate to rock mechanical data 

to create prior spatial compressibility maps?  

• What is the most likely aquifer realization using the geodetic data? 

• How improve the spatial and temporal match with the geodetic data? 

To obtain the answers to these questions, the following workflow was constructed (Figure 1). A 

description of the steps, including the results for each step is presented in the next sections. 

 

Figure 1 Scheme of the 5-step workflow. Input of each step in blue, the orange boxes visualize the calculation method and 
in green, the results per step. 

Step 1: Generation of the prior rock compressibility grids and 

calculate a first set of compaction model and uncertainty parameters: 
The following correlations were used as a prior input in the calculations: Cm – porosity, Cm – slowness 

(1/sonic velocity) and a uniform Cm (uniaxial compressibility) grid for the area above the gas field. The 

porosity, derived from core and logs, and the sonic slowness, derived from seismic data, are used to 

build spatial maps for the Cm values that are used in the Rate Type Compaction Model (De Waal and 

Smits, 1988, Pruiksma et al., 2015). This compaction model allows for a description of stress rate 

dependent compaction. In short, the model describes a first direct strain response, ɛd, to a change of 

the loading rate (e.g. caused by the gas production), followed by a more gradual response referred to 



as the secular strain, ɛs. The total strain is defined as the sum of a direct part and a time dependent 

secular part: 

𝜀 = 𝜀𝑑 + 𝜀𝑠. More details of the implementation of the RTCiM, where the i stands for an isotachen 

formulation, can be found in NAM (2020).   

For these spatial maps the most likely RTCiM parameters and uncertainty parameters are found using 

a Monte Carlo-Markov Chain (MCMC) method. This inversion procedure uses the geodetic data and 

converges to a compaction scenario with the lowest value for the negative log likelihood and 

calculates the value for the model uncertainty (Σ𝑒𝑚𝑝). Knowing the thickness and the pressure, the 

most likely RTCiM parameter values can be calculated. In step 1, only geodetic benchmarks above the 

gas field are used in the calibration, because of the well constrained pressure input in the workflow 

coming from the Groningen reservoir model. 

Step 2, selection of the aquifer realisations 
Using the obtained results for the uncertainty (Σ𝑒𝑚𝑝) and RTCiM parameters from step 1, the objective 

of step 2 is to test the aquifer realisations in combination with the spatial Cm grids. To test multiple 

aquifer scenarios in the southwestern aquifer, box-models that allow for multiple pressure profiles 

per box over the length of the box, were created. Box-models are defined by fault structures (long 

edges of the box) and the boundaries of the gas fields at the western short edges of the boxes. The 

boundaries of the boxes are controlled by the gas pressures in the Groningen field and the pressures 

of the smaller gas fields to the west of Groningen. Combining the defined box-models and legacy 

reservoir models, 3126 possible aquifer realisations for each prior compressibility grid, are tested to 

obtain a value for the NLL.  The computational effort is relatively small because of the fixed values for 

the model uncertainty (Σ𝑒𝑚𝑝) and RTCiM parameters from step 1 that are assigned to both the gas 

field and aquifer reservoir rock properties. The geodetic benchmarks above the aquifers are used to 

assess the modelled subsidence fit to the measurements. The most likely realisation, defined by the 

NLL, for each of the possible spatial Cm grids is selected, resulting in three modelled subsidence 

scenarios. 

 

Figure 2 left: box models in the southwestern aquifer. Right: an example of a pressure depletion realization that shows the 
boundaries of the box-models as well in the southwestern part of the figure. 

Step 3, inversion to obtain optimal spatial Cm grids 
To reduce local higher residuals in the three subsidence scenarios, step 3 uses an inversion scheme to 

give more weight to the measurements in these areas. Rather than using a smoothing parameter, the 

spatial Cm maps of step 1 are used as a prior input into the inversion scheme where the weight of the 

prior is set by a penalty factor. A trade-off between the goodness of fit, provided by the negative log 
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likelihood and the outcome of a geologically reasonable distribution, guided by the prior spatial map, 

concluded the value of the penalty factor.  Step 3 results in 3 new spatial compressibility maps for 

each of the three subsidence scenarios shown in Figure 3. 

  

Figure 3 Results for the spatial Cm inversion using a value for the penalty factor of 5. The columns indicate the prior Cm 
grid. The top row shows the prior Cm grids and the bottom row the resulting spatial Cm grids. 

Step 4, improve the temporal fit to the data, by adjusting the RTCiM 

parameter values 
In step 3, local spatial mismatches are decreased. In step 4 the match to the temporal signal from the 

measurements is improved including a new assessment of the Σ𝑒𝑚𝑝. New values for the RTCiM 

parameters are derived after the application of the MCMC statistical workflow and using the new 

spatial Cm maps from step 3. This step resulted in adjusted posterior values for the RTCiM parameters 

and the parameter values that describe the Σ𝑒𝑚𝑝. Figure 4 shows a coverage plot for the most likely 

subsidence scenario. The blue vertical lines in the left graph show the bandwidths of the predicted 

displacements. The red points in the same graph show the measured displacements. The horizontal 

axis is defined by the rank of the median predicted displacements (more than 10000 data points). With 

a perfect model, the coverage would be 95%, implying that 95 % of the measurements fall into their 

respective prediction intervals. The result after step 4 is close to this value (92%), a value that 

improved when compared to the results after running step 1. More important is the improvement of 

the coverage per benchmark (map on the right in Figure 4). No local or regional clusters of benchmarks 

with a poorer coverage are observed. The adjusted Cm grid in step 3 contributed most to this 

improvement. 

 



 

Figure 4 Prediction interval and coverage (left graph). Right picture: coverage per benchmark. The size of the dot indicates 
the number of measurements that are linked to the benchmark. The colour indicates the fraction of measurements that are 
inside the prediction interval. Dark green means that all measurements in time linked to the specific benchmark are inside 

the prediction interval. 

Step 5, subsidence forecasts 
Step 5 executes the forward calculation to obtain the forecast for the most likely subsidence scenario 

including its uncertainty. The estimated parameters for the Σ𝑒𝑚𝑝 provide the uncertainty of the 

forecast, i.e. the confidence interval. Figure 5 shows for five locations above the field the model results 

with the historical data and the subsidence forecast, including a 95% confidence interval of the model. 

 

 

Figure 5 Subsidence at benchmark locations till 2080: dark grey line is the predicted subsidence, grey is the P95 confidence 
interval, black squares are levelling measurements plus uncertainty, the blue dots are the InSAR measurements. 
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