

HVDC GRID PROTECTION

Dr Fainan Hassan Head of NTI, HVDC

> TU Delft – workshop Power System Integrity – Bring AC and DC together 07/02/2024

Outlines

- Introduction
- AC protection approach to HVDC
- New protection requirements for HVDC grids
- DC protection approach to HVDC grids
- DCCB operating principle
- System impacts on DCCB design
- Conclusions

Introduction

DC grids are emerging as a technology "natural selection" due to colocation of new loads and generation and requirements for cost effective solutions esp offshore

- Ambitious targets for offshore wind (and wave) capacity esp. in Europe by 2050
- Electrification of oil and gas platforms
- Hydrogen production for clean maritime

Elemental research and development work has been done during the last decade

- DCCB demonstrators GE DCCB prototype as part of EC project Twenties in 2013
- Today it's "System of Systems" time

AC protection approach to HVDC

Assuming converter can operate as STATCOM in this example

AC protection approach – fault clearing

DC faults clearing – point-to-point system

Valves are protected (e.g. by bypass thyristors)

[p.u.] 0.5 Plus-pole voltage -0.5 Minus-pole voltage -1.5 2.98 2.985 2.99 2.995 3 3.005 3.01 3.015 3.02 3.025 3.03 3.035 3.04 3.045 3.05 3.055 [s] Sub Sea DC Line plus: Voltage, Magnitude/Terminal i [k/ Minus-pole DC current -10 2.98 2.985 2.99 2.995 3 3.005 3.01 3.015 3.02 3.025 3.03 3.035 3.04 3.045 3.05 3.055 [s] ------ Sub Sea DC Line minus: Current, Magnitude/Terminal i [kA] Plus-pole DC current -10 -20 2.98 2.985 2.99 2.995 3 3.005 3.01 3.015 3.02 3.025 3.03 3.035 3.04 3.045 3.05 3.055 [s] ------ Sub Sea DC Line plus: Current, Magnitude/Terminal

Fault 1: plus-pole to ground @ 3s

Fault 2: fault 1 @3s + minus-pole to ground @ 3.01s

HVDC grids - new requirements

- With AC protection, a single DC fault trips the whole grid
- DCCB options:
 - Assuming DCCB everywhere
 - Discrimination how to identify and isolate faulted section only
 - Breakers of different class/ different settings (line side/converter side)
 - Breakers at selected locations
 - Allow system split during faults

DC protection approach to HVDC grids

DCCB – operating principle

Hybrid DCCB

PE1 : main power electronics branch PE2 : Current Commutation branch

DCCB – operating principle

Current interruption requirement (I_p) for the DCCB depends strongly on the neutralisation time (t_{fn}) and inductance in the current fault path

Initial di/dt in DCCB

$$\frac{di_{dc}}{dt} = \frac{V_{dc}}{L_{eff}}$$

$$L_{eff} = \left[\frac{2 \cdot L_v}{3} + L_{dc}\right]$$

Peak DCCB interruption current

 $I_{\rm p} = I_n + \frac{di_{\rm dc}}{dt} \cdot t_{\rm fn}$

DCCB design metrics

Three inter-dependent variables (for same I_n , V_{dc} , $L_{circuit}$)

 I_n depends on the location of the breaker

 $L_{circuit}$ is the dependent on the fault location

DCCB design – impact of breaker location

Expansion of two independent bipoles using an intermediate DC Switching Station

- Lower *I*p due to lower *I*n
- Cost-effective way of adding flexibility
- But DCCB is needed to prevent losing both bipoles for one fault.
- Only one DCCB and one DC reactor needed (per pole)
- Very simple protection strategy:
- OC in DCCB \rightarrow open DCCB
- N-1 fault → AC protection approach

DCCB design – impact of inductance

Higher inductance:

- Lower *I*p
- But slower current decay rate

DCCB design – impact of fault location

 $L_{dc} = L_v = 100 \text{ mH}$. Expected initial di/dt = 3.14 kA/ms

- Fault directly at converter station gives the expected response
- lp = 8.3 kA

200

km

- Faults at a distance from converter station give more complex results
 - Reason: Reflection at cable/converter station boundary causes partial voltage reversal

DCCB design – impact of cable type

Point-to-point case, Ifn = 2 ms

$\rho_{\text{sheath}} = 2.6 \text{ x } 10^{-8} \Omega.\text{m}$ (Aluminium)

$\rho_{\text{sheath}} = 2.2 \text{ x } 10^{-7} \Omega.\text{m}$ (lead)

Simulations showed little influence from: Soil resistivity, Location of sheath earthing, Resistance of sheath earthing - BUT sheath resistivity has a very big effect

© 2024 GE Vernova and/or its affiliates. All rights reserved.

DCCB design – impact of remote converters mode of operation

Two main options for converters 1 and 2 (healthy converters)

- Remote converters remain deblocked
 - -Valve currents must remain within the SOA for the IGBTs.
 - DC reactor must be increased until this condition becomes true.
 - -Typical manufacturer recommendation is:
 - SOA < 2 x rated current</p>
 - This corresponds to 4 x rated DC current,
 - -i.e. DC bus current of 8 kA
- Remote converter temporarily blocks during fault clearing
 - System will experience a loss of power for a short period of time
- Impact on Fault ride through requirements and performance

DCCB design – Impact of remote converters mode of operation

Converters are deblocked during the fault

Conclusions

- DC grids are emerging due to the requirements for cost effective solutions for deep electrification esp. offshore.
- Subsystems designs have been carried out during the last decade
 - EC Twenties project concluded in 2013 GE prototype of a hybrid DCCB
- Regardless of the breaker technology, the design metrics (mainly three) are interdependent
 - Current interruption capability
 - Fault neutralization time
 - Breaker inductance
 - They are impacted by:
 - Breaker location in the DC Grid
 - Cable type
 - Allowed mode of operation of converters during a DC fault (block/remain deblocked)
 - Effective fault inductance
 - Different DC breaker classes might need to exist to cover the evolution of DC Grids