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Outlines

Introduction

» AC protection approach to HVDC
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Introduction

DC grids are emerging as a technology “natural selection” due to co-
location of new loads and generation and requirements for cost

effective solutions esp offshore

— Ambitious targets for offshore wind (and wave) capacity esp. in
Europe by 2050

— Electrification of oil and gas platforms
— Hydrogen production for clean maritime

Elemental research and development work has been done during the

last decade

TWENTIES project

— DCCB demonstrators — GE DCCB prototype as part of EC project
Twenties in 2013

Final report ~ 20
October 2013 20 ! )
/

20 Twenties
Transmitting wind

Today - it's “System of Systems” time
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AC protection approach to HVDC

Primary protection Backup protection
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Detect
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the fault
(R5) converter (150(2))

Assuming converter can operate as STATCOM in this example
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AC protection approach — fault clearing
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DC faults clearing — point-to-point system

. GE VERNOVA

Valves are protected (e.g. by bypass thyristors)

Fault 1: plus-pole to ground @ 3s

Plus-pole voltage

Minus-pole voltage

298 2985 2.98 2.995 3 3.005 3.01 3.015 3.02 3.025 3.03 3.035 3.04 3.045 3.05 3.055 [s]

——— Sub Sea DC Line minus: Voltage, Magnitude/Terminal i ——— Sub Sea DC Line plus: Voltage, Magnitude/Terminal i

Minus-pole DC current

298 2985 2.98 2.995 3 3.005 3.01 3.015 3.02 3.025 3.03 3.035 3.04 3.045 3.05 3.055 [s]

8ub Sea DC Line minus: Current, Magnitude/Terminal i

[kAl

Plus-pole DC current

-20

298 2985 299 2995 3 3.008 301 3.015 302 3.025 303 3.035 304 3045 305 3.055 [s]

Sub Sea DC Line plus: Current, Magnitude/Terminal i
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Fault 2: fault T @3s + minus-pole to ground @ 3.01s

297 293 299 3 3am 3.02 3.03 3.04 3.05 [s]

——— Sub Sea DC Line minus: Voltage, Magnitude/Terminal i

Sub Sea DC Line plus: Voltage, Magnitude/Terminal i

297 298 299 3 30 3.02 3.03 3.04 3.05 [s]

Sub Sea DC Line minus: Current, Magnitude/Terminal i

297 298 299 3 30 3.02 3.03 3.04 3.05 [s]

Sub Sea DC Line plus: Current, Magnitude/Terminal i



HVDC grids - new requirements GE VERNOVA

« With AC protection, a single DC fault
trips the whole grid

= | DccB - DCCB options:
><— < =
= — T P< > & « Assuming DCCB everywhere
I, P —
_ -~ >¢ _ - Discrimination — how to identify
- T> 7N
= — and isolate faulted section only

« Breakers of different class/

- different settings (line

! side/converter side)

 Breakers at selected locations

« Allow system split during faults

© 2024 GE Vernova and/or its affiliates. All rights reserved.



DC protection approach to HVDC grids

© 2024 GE Vernova an
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DCCB - operating principle GE VERNOVA

VbreakerA Neutralisation
L tme() .
Transient ‘ Evriat lor
interruption |- - - - -~ e = - -
voitage (TIV) Detection time :
: - | : —_— Lie Rt
Nominal vVdec | ==~ L/ wt - - pretlearing -~ - -------------=---- breaker =
Lo time (t,) !
ﬁ—()’l = —Y PE1 P
5 : § M %
' t3 time
+— PEZ |

i ———

Encrgy dizsipating
tiranch

T

Ultra-fast disconnector

Hybrid DCCB

Fault
occurs PElturn

full ; 1 i
o PE2 e off PE1 : main power electronics branch
urn
on

PE2 : Current Commutation branch
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DCCB - operating principle GE VERNOVA

Current interruption requirement (1) for the DCCB depends strongly on the Peak DCCB interruption current
neutralisation time (t;,) and inductance in the current fault path .= [ + digc t
L, DCCB
dig. _ . di, _ _ _ dige .
at St %T L, %T L, %T L, dt loc A tfn
ACCB < Oy
===
&Y &Y
L, Ly L,
l : ' NS
di V
Initial di/dt in DCCB ‘e _ Yac
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DCCB design metrics

Three inter-dependent variables
(fOI’ same In’ Vdc' I—circuit)

Fault
neutralization
time (t¢,)

Interruption
current Size of DC
capability reactor (L)

(lp)

DCCB Interruption current (kA)

25

20

15

10

|74
Iy = I+ —*
LdC+Lc

p fn

ircuit

DCCB Interruption current

50 100 150 200 250
DC reactor size (mH)

tfn ——2ms —8®—4ms —@—6ms

|, depends on the location of the breaker

L.ircuit 1S the dependent on the fault location
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DCCB design —impact of breaker location

Converter
station 1
(Rectifier)

Cable 1: 200 km

— 1
n, M

— |1
Converter
station 3
(Rectifier)

Cable 3: 200 km
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Cable 4: 300 km

Converter
station 4
(Inverter)
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Expansion of two independent bipoles using an intermediate DC Switching Station

Lower Ip due to lower In

Cost-effective way of adding
flexibility

But DCCB is needed to prevent
losing both bipoles for one
fault.

Only one DCCB and one DC
reactor needed (per pole)

Very simple protection
strategy:

« OCin DCCB - open DCCB

N-1 fault > AC protection
approach



DCCB design —impact of inductance

Higher inductance:
* Lower lIp

* But slower current decay rate

Curren A
t

Without added
system inductance

With additional
inductance

Best performance?
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DCCB design —impact of fault location GE VERNOVA

DCCB Okm 20 200
= | km km
YN
— I I—dc
PLCE Faultedtzalisation tmer2 ros - Fault directly at converter station

gives the expected response

10

. Ip = 8.3KA

« Faults at a distance from converter

station give more complex results

« Reason: Reflection at

0 i cable/converter station boundary

0595 0.6 0.605 0.61 0.615

causes partial voltage reversal

—— At terminals =——50km 200 km

Ly = L, = 100 mH. Expected initial di/dt = 3.14 kA/ms
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DCCB design —impact of cable type GE VERNOVA

Point-to-point case, Ifn =2 ms

psheath = 26 X 10_8 Qm (A|Umlnlum) psheath — 22 X 10-7 Qm (Iead)

Main : Graphs | Main : Graphs |
600.000 gL | ] 600,000 ~=¥de 1 B
: I L | X520.940 ’ ‘ | | | | i| Xs21.052
Larage [ | @3.720 500000 . T o 79.025
400.000 g | A-s17.219 400.000 Minimal —{ 4600077
/A\ VOItage || Min -270.9... 300.000 It _| Min-1306...
200.000 AN | _ | Max5209... 200.000 voltage | maxs210..
: / reversa ' | Dif 791.886 100,000 ; | reversal i | Diff 651.707
; ; : i L B —
0.000 f L™ P 0.000 ; < ;
// \ / \\/ | -100.000 e
-200.000 : -200.000 f ;
: W
i - -300.000
~400.000 -400.000
1550 Sl 1 | =Jdc 1
’ : D X2.022 12.0 % 2.023
: 7 | | 00.019 ©0.003
10.00 |p: 11 kKA A-2.003 10.0 A-2.020
: Min -0.116 lo= 7.5 KA Min 0.000
= &0 ; / \ .| Max11.058 &0 Y : | Max 7.528
i / ' | Diff 11.174 /\\ Diff 7.527
i | 6.0 N
5.00 ; :
i / \ § 4.0 /
2.50 : . ? o —
5 e 5 || 0.0 T =]
D-DD r T T T 1 = sac T T T T T T T 1 XD 599
C (595 A;_BDD 0.605 T DEIS X 0.599 0.5925 0.5975 A 0.6025 0.6075 0.6125 B -
©0.615 ©0.615
t 65.357 f 65.357

Simulations showed little influence from: Soil resistivity, Location of sheath earthing,
Resistance of sheath earthing - BUT sheath resistivity has a very big effect

© 2024 GE Vernova and/or its affiliates. All rights reserved.



DCCB design —impact of remote converters mode of operation

Two main options for converters 1 and 2 (healthy
converters)

« Remote converters remain deblocked
—Valve currents must remain within the SOA for the IGBTSs.

— DC reactor must be increased until this condition
becomes true.

—Typical manufacturer recommendation is:
— SOA < 2 x rated current
— This corresponds to 4 x rated DC current,
—i.e. DC bus current of 8 KA
« Remote converter temporarily blocks during fault clearing

— System will experience a loss of power for a short period
of time

« Impact on Fault ride through requirements and
performance

© 2024 GE Vernova and/or its affiliates. All rights reserved.
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DCCB design — Impact of remote converters mode of operation

Converters block during the fault Converters are deblocked during the fault
DCCB Interruption current DCCB Interruption current
25 25 T —7— T
2 2 Area !naccessmle if temporary blocking is not
2 2 permitted
— 20 — 20 Violating SOA in remote converters
C C
o o |
5 15 5 15
o o
C C
2 10 2 10
o o
2 2
o O o O
= =
8 0 8 0
8 0 50 100 150 200 250 300 350 400 8 0 50 100 150 200 250 300 350
DC reactor size (mH) DC reactor size (mH)
——2ms —@—4ms —@—6ms 8 ms ——2ms —@—4ms —@—6ms 8 ms
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Conclusions GE VERNOVA

« DC grids are emerging due to the requirements for cost effective solutions for deep electrification esp. offshore.
« Subsystems designs have been carried out during the last decade
« EC Twenties project concluded in 2013 - GE prototype of a hybrid DCCB
« Regardless of the breaker technology, the design metrics (mainly three) are interdependent
— Current interruption capability
— Fault neutralization time
— Breaker inductance
« They are impacted by:
— Breaker location in the DC Grid
— Cable type
— Allowed mode of operation of converters during a DC fault (block/remain deblocked)
— Effective fault inductance

« Different DC breaker classes might need to exist to cover the evolution of DC Grids

© 2024 GE Vernova and/or its affiliates. All rights reserved.
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