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Programme

• What is Deep Learning (DL) for Surrogate modeling?

• Which methods are used? What am I focusing on?

• Examples of large scale applications.

• ASSAS project.

• The future of the field and challenges.
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What is a surrogate model?
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• Context: physical simulations

• Fluid dynamics
• Nuclear physics
• Climate science
• …

Described by set of Partial Differential Equations (PDEs)/Ordinary Differential Equations (ODEs) 

Solvers are expensive!
(in time)

Build a simpler (faster to solve) 
but still accurate model

Surrogate model

A subset of DL for Science is concerned with surrogate modeling



What is Deep Learning?
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• The main objective of Deep Learning is the approximation of functions (which we do not know)

‘Cat’

𝑓𝜃 is usually overparametrized 
(by vector of weights 𝜃)

𝑦 = 𝑓𝜃 𝑥 = 𝑊 𝑥 + b

Weights to be found!
(During training)

In practice, deep and nonlinear

𝑦 = 𝑓𝜃 𝑥 = 𝑔𝑁 ∘ ⋯ ∘ 𝑔2∘ 𝑔1(𝑥)

Deep

‘Neural Networks’

In DL one overuses the term ‘mapping’



Why Deep Learning?
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• Approximation of 𝑓𝜃 is done in a data-driven manner (data from the simulations)

• Universal approximation theorem (?)

• Extremely flexible

• Scalability (to data)

• Better generalization

𝜃 found during training by looking at ground truth

Fast computation thanks to GPUs (easily parallelizable operations)

Standard numerical solvers will never be beaten
in accuracy (?)



What are the data used?
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There are 3 possibilities

• Purely Supervised learning

• Purely Unsupervised learning

• A mixture of the two

Data from simulations

No data, uses equations from 
PDEs/ODEs

Data + equations + known 
properties of the system



Problem statement
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• Time dependent, parametric and non linear PDEs

•           is a nonlinear (integro-) differential operator
•           is the boundary condition
•           is the solution
•           is the initial condition
•           is the variable on the boundary
•           is the vector of parameters

Learn the mapping 

NB: is this a function?
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Neural Operators



Reduced Order Modeling (ROM)

• Main assumption:
A system determined by N degrees of freedom 
can be projected into a lower dimensional space of
dimension n, with 𝑛 ≪ 𝑁

• In most cases, Reduced Basis methods

• Gaussian Processes, Radial Basis functions, PCA

• Intrusive methodology vs non-intrusive methodology

• Analogy in DL with manifold hypothesis: High-dimensional data actually lie in 
low dimensional manifolds
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PDEs’ solution, image, medical record Correlations, symmetries, noise…



Reduced/Latent space
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• SVD gives the optimal basis (for a linear projection)
• Equivalent to finding a new vector basis with eigenvectors pointing
in direction of maximum variance

• The above mapping is linear! DL gives an handy way to compute nonlinear dimensionality reduction 

During the training an optimal latent space is found

• Are there any desiderata for this very abstract vector? Independent
Interpretable

Disentangled

Very open and not well-defined area of research

• In  Proper Orthogonal Decomposition (POD) the vectors 𝑉𝑘(𝒙) are found using 
Singular Value Decomposition (SVD) on the snapshot matrix  



AutoEncoder
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Some of the available methods

UnsupervisedSupervised
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• Reduced Order Modeling enhanced by DL
o POD for 𝑉𝑘(𝒙) followed by DL to predict 𝛼𝑘

• Sparse Identification of Nonlinear Dynamics
o AutoEncoder + latent dynamics modeled
by pre-determined library of functions

• Neural Operators
o How to approximate an Operator

• Physics Informed NNs (PINNs) (although not limited
to unsupervised)

The known PDEs are used in the loss function
to drive the learning process



Approximating the Solution vs approximating 
the Operator
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Approximating the Solution through Physics-Informed NNs (not the only way)

𝑥𝑖

𝑡𝑖

s(𝑥𝑖,𝑡𝑖)

Through automatic
differentiation

Define a set of collocation points {𝑥𝑖, 𝑡𝑖}

Here, the NN is approximating 
directly the solution s(x,t) !

Plus initial conditions and boundary
conditions



Approximating the Solution vs approximating 
the Operator
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Approximating the Operator through Physics-Informed DeepONet 

𝑥𝑖

𝑡𝑖

𝑠0

× 𝑠(𝑥𝑖, 𝑡𝑖|𝑠
0)

Plus initial conditions and boundary
conditions

Here, the NN is approximating 
directly the Solution Operator !



Neural Operators
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• We want to model the mapping

• What if we apply a simple NN? with 

Then it is clear that the size of the NN depends on 𝐽

Operator layer, generalization of the usual layer for mappings
between finite dimensional spaces to mappings between infinite dimensional spaces 

• For simplicity, 𝑑𝑣 = 𝑑𝑧 = 1

𝐾, g and W parametrized by  NNs!

With J being the size of
the spatial discretization



Autoregressive or global?
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Global approach Autoregressive approach

How is the full spatio-temporal domain of the solution predicted?

• Time is used as an input parameter.

• High number of Neural Networks (NN) weights needed.

• Difficult to generalize outside the largest 𝑇 used in 
training.

• Δ𝑡 is used to march in time as in numerical solvers.

• Previous state contains more information than IC.

• The full temporal solution is obtained autoregressively
starting with the initial condition 𝑠0.

• There is accumulation of errors.



Examples of large scale applications
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• Foundation model
• 1.3 billion NN’s weights

• Foundation model
• Training on small set of PDEs and
see how it generalize to others
• Can generalize to unseen physical
processes 
• From 21 to 629 million NN’s weights
• 1 to 5 orders of magnitude gain in speed



ASSAS project
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The difficulty here is dealing with the operator actions
that may cause discontinuities in the solution.

The objective is to create a ‘simulator’ 
using surrogate models.

11 modules which manage different
 physics (some of them are coupled)

CODE developed by IRSN, severe accidents
simulator, various types of Generation II reactor



AutoEncoding and Neural ODEs 

18



Time generalization
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Some examples
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2D Shallow-Water Equations

Our nRMSE: 2.8 × 10−3 

U-NET FNO PINN



Some examples
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2D Molenkamp Test

5 parameters



Some examples
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Relative error: 4.4 × 10−3 



Conclusions and future challenges

23

• Deep Learning in practice is useful in surrogate modeling because of speed, standard numerical
solvers will always be needed for accuracy ad data

• There are a lot of methods available and it is often difficult to choose one or to understand why one works
better than another: can we find a unified framework for DL methods for PDEs?

• Data scarcity. Sometimes because of memory or time resources we cannot use a lot of data, especially 
for large cale problems: how can we determine which data-points are most needed for an optimal training?

• Can we gain more insights about the learned reduced representations, and what properties should they
respect?



Some useful references

24

Slide 10/11:
• Alfio Quarteroni and Gianluigi Rozza. Reduced Order Methods for Modeling and Computational
Reduction. Springer International Publishing, 01 2014. ISBN 978-3-319-02089-1. doi: 10.1007/
978-3-319-02090-7
• Irina Higgins, David Amos, David Pfau, Sebastien Racaniere, Loıc Matthey, Danilo Jimenez
Rezende, and Alexander Lerchner. Towards a definition of disentangled representations. ArXiv,
abs/1812.02230, 2018b. URL https://api.semanticscholar.org/CorpusID:54447715

Slide 13:
• Steven L. Brunton, Joshua L. Proctor, and J. Nathan Kutz. Discovering governing equations
from data by sparse identification of nonlinear dynamical systems. Proceedings of the National
Academy of Sciences, 113(15):3932–3937, March 2016. ISSN 1091-6490. doi: 10.1073/pnas.
1517384113. URL http://dx.doi.org/10.1073/pnas.1517384113.
• Kaushik Bhattacharya, Bamdad Hosseini, Nikola B Kovachki, and Andrew M Stuart. Model reduc-
tion and neural networks for parametric pdes. The SMAI journal of computational mathematics,
• Stefania Fresca and Andrea Manzoni. Pod-dl-rom: Enhancing deep learning-based reduced order
models for nonlinear parametrized pdes by proper orthogonal decomposition. Computer Methods
in Applied Mechanics and Engineering

http://dx.doi.org/10.1073/pnas.1517384113


Some useful references
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Deep Learning (DL) for Science
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In the last decade a lot of bridges between DL and Science 



My Background

• Bachelor in Physics at Universitá di  Milano-Bicocca in 2020.

• Joint Master of Science in Physics of Complex Systems at Politecnico di Torino
& Université Paris-Saclay in 2022.

• Started my PhD in 2023 in Deep Learning for Surrogate Modeling.
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