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Introduction 
Land subsidence in the Netherlands is becoming an increasingly critical issue as it is closely linked with 

sea level rise, flooding risks and greenhouse gas emissions due to peat oxidation (Erkens et al., 2016; 

Erkens et al., 2016). Despite the importance of this issue, it is very difficult to accurately assess 

subsidence levels across the country. SAR Interferometry (InSAR) is a very promising technique for 

monitoring land surface motion at large spatial scales with frequent temporal sampling. While InSAR 

techniques employing stable point scatterers (PS) have been successfully used to monitor subsidence 

in the Netherlands (Caro Cuenca & Hanssen, 2008; Caro Cuenca et al., 2011; Hanssen et al., 2018), 

these PS points are usually founded at greater depths and the movement of the surrounding landscape 

has had to be indirectly inferred. 

So far, it has been impossible to directly observe land surface motion using distributed scatterer (DS) 

techniques in the Netherlands because rapid soil movement, seasonal land use changes and high noise 

levels result in sudden losses of interferometric coherence, rendering any such attempt extremely 

challenging (Morishita & Hanssen, 2015; Heuff & Hanssen, 2020). 

We present a first test of a novel methodology for InSAR processing which makes use of contextual 

data and machine learning techniques to robustly estimate a surface motion time series using C-band 

Sentinel-1 InSAR at the parcel scale. To our knowledge, this is the first accurate InSAR time series of a 

Dutch grassland polder region. 

Methods 
Contextual Data Integration 
We assemble a database of combined public cadastral parcel delineations and land cover data, soil 

maps, and groundwater management zones, available: PDOK. These factors play a critical role in either 

the movement of the land surface, the scattering properties which affect the radar observation, or 

both. By cross-referencing this data with the SAR imagery, we can assign each pixel to a known parcel 

ID with known soil, land use and land cover (LULC), and groundwater parameters. This ensures that 

we are processing homogeneous observations which are representative of the same land surface 

movement phenomena. 

Parcel Multilooking and Phase Estimation 
After the dataset of contextual data is prepared, we multilook the native 5×20 meter Sentinel-1 

observations according to the parcel delineations of the contextual dataset. This is a natural division 

to make, as the land cover, soil type, and groundwater are approximately consistent within a parcel. 

This also ensures a high multilooking degree of approximately 100 equivalent looks (although this 

varies with each parcel according to its shape and size) which aids in suppressing noise (Hanssen, 



2001). Following the multilooking step, we perform phase estimation using the EMI method (Ansari 

et al., 2018). 

Segmentation and Temporal Phase Ambiguity Resolution 
Rapidly changing displacement phases and noise make the application of standard phase unwrapping 

algorithms very unreliable, and often large movements in one direction are misinterpreted as smaller 

movements in the opposite direction (Alshammari et al., 2018; Tampuu et al., 2022). This motivated 

the development of a machine-learning aided phase unwrapping algorithm, described in Conroy et al 

(2022). The algorithm uses rainfall and temperature data to anticipate large subsidence and uplift 

events in order to guide phase ambiguity resolution in the temporal domain. 

The second major hurdle preventing successful InSAR estimations are the sudden losses of coherence 

in the time series. Especially during the (late) summer period, coherence levels can often drop to such 

low levels that there is essentially no useful information retained in the interferograms with even the 

shortest temporal baseline (6 days). Whenever this occurs, we designate the event as a “Loss-of-Lock” 

and divide the time series into separate segments. While we can unwrap each individual temporal 

segment with a satisfactory degree of reliability, the segments themselves are disconnected, and an 

unknown vertical shift exists between segment (Conroy et al., 2022). We can reconnect the segments 

by observing neighbouring parcels. While each parcel follows a similar general pattern, the actual date 

during which coherence drops below the useable threshold is different in each case. Thus by using 

contextual information to group similar parcels together, we can use the aggregate of all segments in 

a group to fully span the incoherent periods with coherent observations. 

This is accomplished by fitting a kinematic model to the unwrapped segments. For this purpose, we 

use a simple seasonal plus linear (SL) model, which can be used to approximately estimate the mean 

position of a segment without making many assumptions. The total number of segments in a group is 

N = (Num. SAR tracks) × (Num. parcels per group) × (Num. segments per parcel). The SL model is 

parameterized by the vector θ, and given N segments, there are N + 3 parameters to estimate: 

 

where t is the independent variable representing time, and fa denotes an annual frequency. The vector 

θ contains all the estimated parameters of the displacement model: θ1 is the amplitude of the annual 

periodic component, θ2 is the phase offset of the annual periodic component, θ3 is the linear rate and 

θi+3 is the estimated vertical shift of the ith segment. Note that the parameters [θ1, θ2, θ3] are the 

same for every segment in a given group g characterized by the model fg. The model is fit by 

minimizing the mean squared error between the model and the segment during the coherent period. 

Spatial Ambiguity Resolution 
High noise levels in the individual parcels make applying a geodetic network approach to spatial 

ambiguity resolution  very challenging (van Leijen, 2014). However, a less strict spatial ambiguity 

constraint is applied by considering the phase changes between consecutive interferograms of a given 

parcel, ∆φ, versus its corresponding group mean, ∆φ :̅ 



 

Each parcel is checked and the ambiguities are adapted according to equation (2). The group mean is 

recalculated once the spatial unwrapping procedure is completed for all parcels. 

Results 
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Figure 1 (a) Parcel example of a grassland polder where a peat soil is covered by up to 15 cm clay/peat. Three independent 
Sentinel-1 track results are shown relative to the reference extensometer. (b) Group time series estimations plotted against 

validation data obtained from the Zegveld test site. 

Time Series Validation Against Ground Truth 
We validate the approach described in Section 2 against in-situ measurements taken by an 

extensometer, which provides hourly measurements of Holocene soil displacement at a given location 

(van Asselen et al., 2020). A 10x10 km study area surrounding Zegveld, the Netherlands is observed 

between Apr. 1, 2020 and Jan. 15, 2022. These dates are chosen as they correspond with the 

installation of an Integrated Geodetic Reference Station (IGRS) with corner reflectors which is used as 

the reference point, and the failure of the Sentinel-1b satellite in early 2022, respectively. 

Two types of output are available: partial time series estimations per parcel (shown in Figure 1a) and 

full time series estimations per group (Figure 1b). It should be noted that while the extensometer 

provides measurements at one point, the InSAR time series is a spatial average of many points, and 

will therefore differ from the extensometer as some short term variations are filtered out of the result. 

Note that this spatial filtering effect will be stronger for the group result. The validation parcel belongs 

to a larger group of 51 parcels, which, based on the contextual data available, we expect to behave in 

a broadly similar fashion. A wholly continuous time series of the group can be estimated by taking the 

median of all time series segments. This has the benefit of strongly reducing the effects of noise and 

phase unwrapping errors at the cost of reduced spatial resolution. 

Initial Spatial Results 
A spatial plot showing the estimated linear deformation rate per parcel is shown in Figure 2. The time 

series used in this study is too short to provide accurate estimates of linear irreversible subsidence 

rates, however, we can assess both the spatial correlation of the result and compare the order of 

magnitude to the expected level. 



 

Figure 2 Zegveld linear displacement rate map. Uncoloured parcels indicate that no estimation is made at that location. 

Conclusion 
We demonstrate a new methodology for estimating the ground motion of cultivated peatlands using 

DS time series InSAR. Our initial results show that the approach is promising, and we have been able 

to successfully validate our result against the ground truth data we have available. To our knowledge 

this is first accurate InSAR measurement of peatland surface motion in the Netherlands. Following this 

successful test, we plan to process a longer time series in order to obtain more accurate long-term 

subsidence estimates and to allow for comparison between seasons as a response to climatic stimuli. 
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