
Pulse counting methods including multiplicity
counting in nuclear safeguards

Imre Pázsit

Chalmers University of Technology
Division of Subatomic, High Energy and Plasma Physics

Nuclear Engineering Group

Tutorial at IMORN-31
Delft, 2024-09-09

Delft, 2024-09-09



Fluctuations in constant (low power) systems

In a particle cascade with “branching” such as a fission chain, cosmic
showers or family trees, the individual events are correlated. The
branching (i.e. the particle multiplication) brings about correlations.
Variance 6= mean.

Therefore, unlike in a Poisson process (= independent events) there is
useful information in the fluctuations (i.e. in the “excess” variance
over Poisson) beyond the information in the expectations, which can
thus be utilized.

However, as is known, family trees can also die out - also a statistical
phenonenon. This is the start of the study of branching processes
(The extinction of family trees, Watson and Galton).

Both of the above observations are relevant to the interest in neutron
fluctuations in low power systems.
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History

A historical interest

The extinction probability and the bomb

Before dropping the first bomb on Hiroshima, Edward Teller
suggested to explode it instead high above Tokyo during the
night, as a deterring demonstration

There were concerns that the bomb would not explode, among
others due to the random character of the branching process (like
the extinction of family trees)

Feynman, Serber, de Hoffman, Fermi and others started
investigating neutron fluctuations

The original papers, which could confirm or deny their
motivations, are still classified
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History

Request for an LANL report in 2006

Date: Mon, 2 Oct 2006 17:19:51 +0200 (MEST)

From: Imre Pazsit <imre@mail.nephy.chalmers.se>

Subject: Inquiry about a report

To: reports@lanl.gov

To whom it may concern

I would like to find a copy of an old wartime report which is

hard to identify. It has the number LADC-250, it dates from

1944, and its authors are F. De Hoffman, E. Fermi and R. Feynman.

The order of the authors is not sure, neither that they all

appear on the report. It is about the fluctuation of the number

of neutrons in a fission chain, generated in a multiplying

medium.

I appreciate very much if you can help us in finding the report.

Yours sincerely

Imre Pazsit
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History

The reply

Date: Mon, 02 Oct 2006 09:34:53 -0600 To: Imre Pazsit

<imre@nephy.chalmers.se>

From: Elaine Deschamp <edeschamp@lanl.gov>

Subject: Re: Inquiry about a report

We are sorry but due to a mandate from NNSA to the

laboratory and Research Library policies, we are unable to

provide technical reports until further notice.

Thank You,

Elaine

LANL Research Library
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History

Neutron fluctuation based reactivity measurements
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History

Determination of the multiplication factor/reactivity

Criticality is defined by the multiplication factor k , which is the
fundamental eigenvalue of the transport equation:

k = Ni/Ni−1; i = generation number of neutrons in a chain

Expectations of total number of neutrons generated in one chain:

1 + k + k2 + · · · = 1

1− k
' 1

−ρ

The flux level in a subcritical reactor with a source of intensity S , and

hence the number of counts during a time T , will be proportional to
S

−ρ
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History

Determination of the multiplication factor/reactivity

Number of detector counts in a time interval T

〈Z (T )〉 =
S

−ρ
F (...) · ε · T

The function F (...) is proportional to the leakage intensity of the neutrons,
and the detector efficiency includes both material and geometry factors.

The source strength S , the exiting neutron flux F and the detector
efficiency ε are all unknown.

Hence this method cannot be used without calibration to determine k or
the reactivity

ρ =
k − 1

k
.
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Reactivity measurements

Use of fluctuations (second moment):

Feynman-alpha (variance to mean) method: dependence of the relative
variance of the counts Z on the measurement time T where

α = −ρ/Λ > 0 : (1)

σ2Z (T )

〈Z (T )〉
= 1 + Y (T ) = 1 + εA1

(
1− 1− e−αT

αT

)
(2)
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Reactivity measurements

Use of fluctuations (second moment):

Rossi-alpha method: dependence of the relative auto-covariance R(τ) of
a detection at an arbitrary time followed by another one time τ later on
the time lag τ and α = ρ/Λ:

R(τ) =
1

2
εA1αe

−ατ (3)
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Reactivity measurements

The history of the theory

Feynman, Serber and the others used phenomenological arguments to
derive the Feynman-alpha formula (measurement of reactivity)

In a similar way, the Italian cosmic ray physicist Bruno Rossi (1905 -
1943) suggested a formula for the correlations in detection of cosmic
showers (the Rossi-alpha formula).

The first step in developing the fundamental theory was taken by a
Hungarian, Lajos Jánossy (1912 - 1978). He applied backward
master equations for studying fluctuations in cosmic electron-photon
showers (“regeneration point technique”)

The solid theoretical background of the Feynman- and Rossi-alpha
formulas in reactor physics was given by Lénárd Pál (Pál-Bell
equations) in a series of articles, the most known a paper in Nuovo
Cimento Supplemento, in the late 1950’s and early 1960’s.
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Mater equations

Theoretical framework: master equations

Master equation (Chapman-Kolmogorov equation) of Markovian processes
for the transition probability P(N , t |M , t0) with t > t ′ > t0 :

P(N , t |M , t0) =
∑
L

P(N , t |L, t ′)P(L, t ′|M , t0) (4)

Note: time (causality) from right to left here (←).

A differential equation from (4) can be obtained in two ways: either by
letting

t ′ → t , i.e. t − t ′ = o(dt)

or
t ′ → t0, i.e. t ′ − t0 = o(dt).

This will give two differential equations for the same quantity. They are
called the forward and the backward Chapman-Kolmogorov or master
equations, respectively.
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Mater equations

Forward and backward equations

For getting solvable differential equations, we need to assume that the
transition probabilities for infinitesimal times are known. For N 6= M , the
transition probability tends to zero linearly with dt , thus one can write

P(N ,t + dt |M , t) = P(N ,t |M , t − dt) = WN ,M dt ; N 6= M (5)

where the WN ,M are called the transition intensities.

These are known from the physics of the process, as it will be illustrated
soon.

The transition probabilites are not all independent. Since the probabilities
have to sum up to unity, one has

WN ,N dt = 1−
∑
L6=N

WL,N dt (6)

which is the probability of no event (transition) taking place during dt .
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Mater equations

Forward and backward equations

Performing the limits t ′ → t and t ′ → t0, respectively, and using the
transition probabilities, one obtains:

Forward equation:

d

dt
P(N ,t |M , t0) =

∑
L6=N

WN ,LP(L,t |M , t0)− P(N ,t |M , t0)
∑
L6=N

WL,N

Backward equation:

− d

dt0
P(N ,t |M , t0) =

∑
L6=M

P(N ,t |L, t0)WL,M − P(N ,t |M , t0)
∑
L6=M

WL,M

One can see a similarity with the direct and adjoint neutron transport
equations.
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Mater equations

“Common sense” derivation for a branching process

Notations:

Q : reaction intensity for one neutron:

fk : probability distribution of generating k neutrons in a reaction

q(z ) =
∑
k

fk z
k the generating funtction of fk (known).

Forward equation:

pn(t + dt) = pn(t)(1− n Q dt) + Q dt

n∑
k=0

fk (n − k + 1)pn−k+1(t)

Backward equation (“mixed” equation):

pn(t) = (1−Q dt)pn(t − dt) + Q dt

∞∑
k=1

fk
∑

n1+···+nk=n

k∏
j=1

pnj (t)
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Mater equations

Forward and backward equations: for the generating function

Introducing the generating function g(z ,t) of the probability p(n,t) of
finding n particles at time t in a multiplying medium in the standard way,
i.e.

g(z ,t) =

∞∑
n=0

p(n,t) zn , (7)

then the forward and backward equations have the following form:

Forward equation:

∂g(z ,t)

∂t
= Q [q(z )− z ]

∂g(z ,t)

∂z
(8)

Backward equation:

∂g(z ,t)

∂t
= Q {q [g(z ,t)]− g(z ,t)} (9)

The initial condition in both cases is g(z ,0) = z .
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Mater equations

The reason for the non-adjoint property

As is well known, the transport operator (defining the “direct”
transport equation) is not self-adjoint.

Only operators which describe processes that are invariant to time
reversal are self-adjoint. The transport process is not invariant to time
reversal.

One-group diffusion theory is invariant to time reversal, and hence it
is self adjoint.

In stochastic theory, the differences between the forward and the
backward (adjoint) master equation, or their moments, are much
larger.

This is because the “violation” of time reversal is of a higher order for
a branching process.
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Mater equations

Time reversal of deterministic neutron transport

E
n
e
rg
y

E
n
e
rg
y
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Mater equations

Illustration of time reversal in branching processes

Branching

“Inverse branching”

U

U
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Mater equations

Feynman-alpha from a forward master equation

Following standard considerations, the forward master equation for
P(N ,C ,Z ,t |t0) can be written down by considering changes of the state of
the system between t and t + dt , leading to

dP(N ,C ,Z ,t |t0)
dt

= λcP(N + 1,C ,Z ,t |t0)(N + 1) +

λdP(N + 1,C ,Z − 1,t |,t0)(N + 1) +

λf
∑
n

∑
m

P(N + 1− n,C −m,Z ,t |t0)(N + 1− n)pf (n,m) +

S P(N − 1,C ,Z ,t |t0) + λP(N − 1,C + 1,Z ,t |t0)(C + 1) −

P(N ,C ,Z ,t |t0)[N (λf + λc + λd ) + λC + S ]. (10)

The initial condition associated with this equation reads as

P(N ,C ,Z ,t = t0|t0) = δN ,0δC ,0δZ ,0. (11)
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Mater equations

Generating functions

By defining the generating functions

G(x ,y ,v ,t |t0) =
∑
N

∑
C

∑
Z

xN yC vZP(N ,C ,Z ,t |t0) (12)

and
gf (x ,y) =

∑
n

∑
m

xnympf (n,m), (13)

the following equation is obtained from (10):

∂G(x ,y ,v ,t |t0)
∂t

= {λf [gf (x ,y)− x ]− λc(x − 1)− λd (x − v)}×

∂G(x ,y ,v ,t |t0)
∂x

+ λ(x − y)
∂G(x ,y ,v ,t |t0)

∂y
+ (x − 1)S G(x ,y ,v ,t |t0)

(14)
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Mater equations

Notations for expectations

with the initial condition

G(x ,y ,v ,t = t0|t0) = 1; t0 ≤ 0. (15)

For the expectation of the random processes N(t), C(t) and Z(t ,0), the
notation of the expectation value is omitted, e.g.

E{N(t)} ≡ 〈N(t)〉 ≡ N (t) =
∂G(x ,y ,v ,t |t0)

∂x

∣∣∣∣
x=y=v=1

. (16)
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Mater equations

Further moments

Further, one has

∂gf (x ,y)

∂x

∣∣∣∣
x=y=1

=
∑
n

∑
m

n pf (n,m) ≡ 〈νp〉 ≡ 〈ν〉 (1− β), (17)

∂gf (x ,y)

∂y

∣∣∣∣
x=y=1

=
∑
n

∑
m

m pf (n,m) ≡ 〈νd 〉 ≡ 〈ν〉β, (18)

The standard notations

ρ =
〈ν〉λf − (λf + λc + λd )

〈ν〉λf
, (19)

Λ =
1

〈ν〉λf
and ε =

λd
λf

(20)

are also introduced.
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Mater equations

First moments

The three first moment equations read as follows:

dN (t |t0)
dt

=
ρ− β

Λ
N (t |t0) + λC (t |t0) + S , (21)

dC (t |t0)
dt

=
β

Λ
N (t |t0)− λC (t |t0) (22)

and
dZ (t ,0|t0)

dt
= λdN (t , |t0) = ελf N (t |t0), t ≥ t0. (23)

The first two equations are actually the point kinetic equations (but for a
subcritical system with a source), as seen in the previous Tutorial.
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Mater equations

Second moments

For the sake of simplicity we introduce the modified second moment of the
random variables a and b as follows:

µaa ≡ 〈a(a− 1)〉 − 〈a〉2 = σ2a − 〈a〉 (24)

and
µab ≡ 〈ab〉 − 〈a〉 〈b〉 (25)

where a and b stand for either of the variables neutron population N,
precursor population C and detector count Z.

Taking auto- and cross-derivatives, one obtains the following six equations:
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Mater equations

Second moments

dµNN (t |t0)

dt
= −2αµNN (t |t0) + 2λµNC (t |t0) + λf 〈νp(νp − 1)〉N (t |t0), (26)

dµNC (t |t0)

dt
= −(α+λ)µNC (t |t0)+

β

Λ
µNN (t |t0)+λµCC (t |t0)+λf 〈νp νd〉N (t |t0),

(27)
dµCC (t |t0)

dt
= −2λµCC (t |t0) + 2

β

Λ
µNC (t |t0) + λf 〈νd(νd − 1)〉N (t |t0), (28)

dµNZ (t ,0|t0)

dt
= −αµNZ (t ,0|t0) + λµCZ (t ,0|t0) + ελf µNN (t |t0), (29)

dµCZ (t ,0|t0)

dt
= −λµCZ (t ,0|t0) +

β

Λ
µNZ (t ,0|t0) + ελf µNC (t |t0), (30)

dµZZ (t ,0|t0)

dt
= 2ελf µNZ (t ,0|t0). (31)
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Nuclear safeguards

The need for nuclear safeguards

Nuclear materials are widespread: industry, medicine, electricity
production, agriculture etc.

Most materials are well known, but still require regular control and
verification.

If illicit trafficking of nuclear material is not prevented the possible
results are:

Proliferation

Health risks during transport and human contact.

Material could be used in radioactive dispersion devices - “Dirty bombs”

Sources that are not accounted for (Orphan sources) are increasing in
number and hard to quantify and detect.
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Multiplicity counting

Application in safeguards: multiplicity counting

Traditional multiplicity counting

Multiplicity counting is a method to determine the unknown parameters,
primarily the fissile mass, of an unknown item by measuring the count rate
of spontaneously emitted radiation (neutrons).

It is performed by counting discrete detection events, i.e. using neutron
detectors in pulse mode.

Because the count rate depends on three unknown parameters of the sample
(see later), we need three independent measured quantities.

These are the singles, doubles and triples count rates ( S , D and T rates),
i.e. the frequency of measuring one, two or three neutrons in coincidence
(“simultaneously”).

By deriving analytical relationships between the three unknown parameters
and the S ,D and T rates, the parameters can be unfolded from the
measured rates.
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Multiplicity counting

Internal multiplication

Neutron emission by spontaneous fission from a sample: in multiplets
(compound Poisson distribution in time).

For larger samples, internal multiplication will occur (by induced fission),
considered as instantaneous.

Some source events are not multiplets: (α,n) reactions not determined
exclusively by the fissile mass.

Unknowns:

- the sample mass (fission rate F ),
- the fraction of (α,n) neutrons in the total source neutrons (α),
- the internal multiplication M .
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Multiplicity counting

Methodology

These three unknowns are determined from the S ,D and T rates.

Because only a backward approach can be used, derivation of the
relationship between the S ,D and T rates and the unknown parameters
F , α and M goes in two steps.

First, one derives the first three factorial moments (“Böhnel
moments”) of the number of neutrons emitted from the sample by a
source event from a time-independent backward type master
equation for discrete events, assuming a first collision probability p
(which determines the internal multiplication);

Then, by accounting to the intensity of the source events (through
the fission rate F , these moments are converted into S ,D and T
rates (detections per second).
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Multiplicity counting

First step: derivation of the factorial moments

Master equations for the number distributions of neutrons emitted from
the sample.

p(n) - number of neutrons emitted from the item due to one neutron;

P(n) - number of neutrons emitted from the item due to a source event;

h(z ) and H (z ) - their generating functions.

p(n) = (1− p)δn,1 + p

∞∑
k=1

pr (k)

k∏
i=1

p(ni)

{n1+n2+...+nk=n}

(32)

P(n) =

∞∑
k=1

ps(k)

k∏
i=1

p(ni)

{n1+n2+...+nk=n}

(33)

pr (k) and ps(k) are the number distributions in an induced fission and the
source neutrons per emission event, respectively.
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Multiplicity counting

Derivation of the factorial moments (cont)

The generating functions are defined as

h(z ) =

∞∑
n=0

p(n) zn ; H (z ) =

∞∑
n=0

P(n) zn (34)

For the generating functions one obtains from (32) and (33)

h(z ) = (1− p) z + pqr [h(z )]

H (z ) = qs [h(z )]

(35)

(36)

From these, the factorial moments ν̃i , i = 1,2,3 of the number of neutrons
emitted from the sample by a source event are given as

ν̃i =
d iH (z )

d z i

∣∣∣∣
z=1

(37)
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Factorial moments

Factorial moments

The equations for the generating functions are higly non-linear, and
cannot be solved explicitly.

However, the factorial moments and the values of P(n) can be
obtained analytically in a recursive manner from linear equations.

Neutron Factorial Moments

As previously mentioned the factorial moments are routinely used in
safeguard measurements since they are related to measurable
quantities.

The first three moments are normally used: singles, doubles, triples.

Factorial moments are calculated as derivatives of the generating
functions evaluated at z = 1.
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Factorial moments

First moment

First moments (singles)

ν̃1 = νs,1 h1, (38)

where

h1 =

[
dh(z )

dz

]
z=1

≡ ν1.

It follows from (35) that h1 = 1− p + p νr ,1 h1. from which one obtains

h1 =
1− p

1− p νr ,1
≡M, where p νr ,1 < 1. (39)

The expression M ≡ h1 is called leakage multiplication.

The leakage multiplication is not known, because the first collision
probability p is not known. The unknown parameter p will not appear in
the continuation, only M.
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Factorial moments

Doubles, triples

Second moments (doubles)

In a similar way one obtains

ν̃2 = M2

{
νs,2 +

p

1− p νr ,1
νs,1 νr ,2

}
= M2

{
νs,2 +

M− 1

νr ,1 − 1
νs,1 νr ,2

}
.

(40)

Third moments (triples)

ν̃3 = M3

{
νs,3 +

M− 1

νr ,1 − 1
(3 νs,2 νr ,2 + νs,1 νr ,3) + 3

(
M− 1

νr ,1 − 1

)2

νs,1 ν
2
r ,2

}
.

(41)
Symbolic computation (with the use of Mathematica™) allows calculation
of very high order moments.
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Factorial moments

Second step: conversion to detection rates

Denote the intensity of the source events Q = F (1 + ανsf ,1)

Then the detection intensity of the multiplets S ,D and T rates is given as

S = εQ

〈(
n

1

)〉
= εQ

ν̃1
1!

(42)

D = ε2Q

〈(
n

2

)〉
= ε2Q

ν̃2
2!

(43)

T = ε3Q

〈(
n

3

)〉
= ε3Q

ν̃3
3!

(44)

where ε is the detection efficiency.

From this and the formulae derived so far, the detection rates of the
singles, doubles and triples can be easily calculated.
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Factorial moments

Detection rates

The final results for the detection rates of singles, doubles and triples are given as

S = FεM νsf ,1(1 + α) (45)

D =
Fε2fd M

2

2

[
νsf ,2 +

(
M− 1

νi1 − 1

)
νsf ,1(1 + α)νi2

]
(46)

T =
Fε3ft M

3

6

[
νsf ,3 +

(
M− 1

νi1 − 1

)
[3νsf ,2νi2 + νsf ,1(1 + α)νi3]

+ 3

(
M− 1

νi1 − 1

)2

νsf ,1(1 + α)ν2i2

] (47)

where

M =
1− p

1− p νr ,1
(48)

is the leakage multiplication, related to p, the uniform first collision probability.
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Inversion (unfolding)

The inversion procedure

The unknown sample parameters M, F and α can be determined from the
measured values of S , D and T by inverting the above expressions.

One obtains a third order equation for the leakage multiplication M:

a + bM + cM2 + M3 = 0 (49)

a =
−6Tνsf ,2(νi1 − 1)

ε2ftS [νsf ,2νi3 − νsf ,3νi2]
(50)

b =
2D [νsf ,3(νi1 − 1)− 3νi2νsf ,2]

εfdS [νsf ,2νi3 − νsf ,3νi2]
(51)

c =
6νi2νsf ,2D

εfdS [νsf ,2νi3 − νsf ,3νi2]
− 1 (52)
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Conclusions

Outlook, current activity

Current research activity includes:

Extending the “point model” of multiplicity counting to
space-angle-energy dependent cases

Using continuous signals of fission chambers for multiplicity counting
and reactivity determination

Start-up with a weak source (UK)

Stochastic modelling of the detection of scintillation detectors with
Geant4

In summary, neutron fluctuations in low power systems is a very active
area of current research.
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