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Rationale 
Land subsidence is hazardous as it inflicts damage and increases flood risks. In recent years in the 

Netherlands, it has gained substantial attention from governmental bodies, industry, and researchers. 

This momentum resulted in the process of maturation of subsidence as a research topic alongside 

with an increase in the amount of available data and physical modelling output. This process however, 

also revealed limitations in the state-of-the-art of subsidence modelling. For instance, often applied 

physics-based models to describe below-ground subsidence processes are not always able to explain 

above-ground observations. An example is the slow-paced shallow subsidence processes in soft soils 

by increased vertical effective stress as a result of groundwater level lowering (Verberne, 2021). In 

addition, disentangling of different superimposed land subsidence processes in areas subjected to 

various subsurface interventions from observations is presently challenging (Candela and Koster, 

2022). 

Using Artificial Intelligence (AI) to understand system behaviour is well established in many scientific 

disciplines, especially where physics-based models cannot describe processes based on available 

heterogeneous big datasets. The field of land subsidence is a prime example where AI techniques 

could aid physical predictive modelling, given the availability of big data sets of various quality and 

spatiotemporal resolution on different aspects of the below and above-ground domains. 

In this contribution, we explore applications of different AI techniques within the field of land 

subsidence and present preliminary results. We focus on the coastal plain of Friesland in the 

Netherlands (Fig. 1), where shallow phreatic groundwater level lowering and deep gas extraction 

results in superimposed land subsidence processes. Furthermore, extensive, different and big datasets 

relevant to subsidence analysis have been made available for this area: GeoTOP, a 3D geological model 

of the upper 50 m of the subsurface (resolution 100x100x0.5m, cells attributed with lithology and 

stratigraphic unit) (TNO, 2022), a phreatic groundwater level change model (resolution 100x100m, 

averaged per month) (Dabekaussen et al., 2020), geodetic data consisting of levelling, GNSS and InSAR 

data (Esteves Martins et al., in prep), and gas reservoir pressure changes data (Candela et al., in prep). 

 

 

Method 
Our approach regards different Hybrid AI techniques, meaning here the connection between physics-

based modelling and advanced deep learning. More specific, the presented techniques fall within the 

categories of Federated Learning (FL) and Explainable AI (XAI).  



 

FL jointly trains a machine learning model while keeping the training data separate at different 

locations. Gas reservoir pressure change data from hydrocarbon operators is often kept confidential 

and, therefore, difficult to obtain by researchers. FL has as an advantage that it can train models while 

keeping confidential reservoir pressure data at the premises of hydrocarbon operators. This way, data 

leakage is prevented and thus predictive land subsidence can be run securely (cf. Van Laanen, 2022).   

 

Figure 1  Topographical map of the Netherlands showing the area of interest (red square). The zoomed-in map shows for 
the area of interest the spatial distribution of gas fields (green) (NLOG, 2022), and the inland extent of the coastal plain 

accommodating soft soil deposits (hatched), including surficial peat beds (brown) (TNO, 2022). 



 

XAI regards the use of for humans understandable machine learning approaches, without relying on 

non-transparent ‘black-box’ methods. Insight in the causes of land subsidence modelling are critical 

for governance and industry to implement mitigation strategies. This requires modelling outcomes to 

be interpretable by humans. Generally, AI leans on black-box concepts, with often difficult 

interpretable outcomes. XAI therefore is vital in communicating and implementing modeling results. 

FL is applied on vertically partitioned data mimicking 2 nodes. The library PySyft is selected, combining 

the secure inner sect (Multi-Party Computation) technique with the Split Neural Networks (NN) 

method, averaging the outputs of the split trained models with max pooling. The machine learning 

technique Neural Network is selected for flexibility in algorithms including physics informed NN. 

Subsidence predictions are performed over the area of interest including different NN splits. Actual 

subsidence in the area is compared with the performed subsidence predictions. 

Counterfactual explanations are used as a means to make the XAI approach transparent. They are 

calculated based on a trained machine learning model. Counterfactual explanations provide insights 

in the prediction of a machine learning by calculating which features need to change by how much in 

order to change the predicted outcome. As such, counterfactual explanations can be used to explain 

the causes of certain predictions generated by ‘black-box’ algorithms. Here, a model of Mothilal et al. 

(2019) with associated Python library is used to generate counterfactuals and feature importance on 

our data. 

Synthetic data 
The extensive different datasets are used to create synthetic data that describes total observed 

subsidence using different below-ground subsidence processes at different depths. By using 

synthetic data, complete control is obtained on the behaviour of the developed algorithms, which is 

critical to fine-tune modelling processes. The synthetic subsidence data is generated by different 

well established physical models describing shallow (Fokker et al., 2019) and deep (Candela et al., 

2022) subsidence, with the addition of noise, and interpolated towards the locations of the real 

geodetic measurements. 



 

 

Figure 2  Results of the FL prediction of total subsidence (mm) by deep and shallow processed based on synthetic data. A 
datapoint describing actual (synthetic) and predicted subsidence in a federated setting is selected indicating minimal 

differences. 

Preliminary results 
The FL results shows an R2: 0.83 (MSE of 0.0046, MAE of 0.042) between predicted and actual 

(synthetic) subsidence (Fig. 2). The predictions in federated settings are equal to those in non-

federated settings, indicating that training the data while being at different servers provides 

comparable results as training the data while being at the same server. Furthermore, the best results 

are obtained in areas with both shallow and deep subsidence processes, i.e. on top of the gas fields. 

The latter is most likely because there, the subsidence rates are the highest, resulting in a relatively 

favourable subsidence signal-to-noise ratio. These preliminary results are promising in view of training 

subsidence models using confidential (hydrocarbon) data in a secure way. 



 

 

Figure 3   XAI results for the city centre of Leeuwarden. The legend indicates synthetic cumulative subsidence (mm) for a 
period of five years on the locations on geodetic data points. A datapoint with the class 10-14 cm is selected. The popped-up 

table shows 2x five features that practice most influence when changed (positively or negatively) on the 10-14 cm class. 
Note that the table is in Dutch (juli = July, juni = June, sep = September, maart = March, veen = peat, klei = clay, zand = 

sand). 

The XAI results produced counterfactual explanations for 75 features, e.g. soil types at different 

depths and groundwater levels per month. For now, this accounts all features available in the dataset, 

including those we expect to barely affect subsidence (such as the features that comprise ‘sand’ at 

different depths). Nevertheless, we are able to identify features per point that have most influence 

on the synthetically generated total subsidence class. For example, in Figure 3, the desired total 

subsidence for the selected point is the class 10 – 14 cm. The counterfactual explanation revealed that 

this class is best reached for this point by obtaining higher values of the lowest water level in July 

(‘juli_min’ in the table), or lower values of peat at 7 m below the surface (‘veen_7’ in the table). In this 

example, especially the July groundwater levels result is potentially useful for groundwater 

management strategies to mitigate subsidence, as this can be physically adjusted by humans. 

Look forward 
In this contribution, FL combined with XAI is used to explain land subsidence in a single point in a 

secure way with the aid of (federated) synthetic data generation and Multi-Party Computation in a 

federated learning setting. Future steps would focus on i) generalizing the secure counterfactual 

explanation over a larger area to improve explaining the relative contributions to subsidence of 

shallow and deep processes and the reduce of the number of features, and ii) generating a diverse set 



 

of candidate synthetic counter factual explanations to create a robust explanation. Furthermore, 

synthetic data should be substituted by the real available datasets to finalize the workflow. 
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