Adversarial Al in ICT infrastructures

C5ISR workshop (2025-03-25)

Piotr Zuraniewski, TNO

Let me introduce myself

- Senior Scientist at Networks Dept., previously Cyber Security Dept. at TNO
- Frequently project technical leader
- PhD in applied mathematics
- Former Cisco Academy Instructor and Cisco Certified Network Professional

- Programmable infrastructures
- AI-based orchestration & management
- Adversarial AI & AI security
- Autonomous security response
- Standardization (ETSI *Securing AI* delegate)
- Supervising students & onboarding new colleagues

If and where AI is used

- Do you/your team use AI in your professional activities?
- If so:
 - What type of AI do you use (e.g., predictive AI, image recognition, Large Language Models,...)
 - What is the maturity level of AI usage (scale 1-5), e.g.:
 - lab/experimentation 1
 - training/exercises 3
 - every day's operations 5
 - For which tasks do you use AI (scale 1-5), e.g.:
 - side/minor tasks 1
 - regular tasks 3
 - core tasks 5

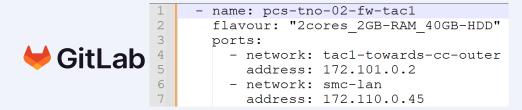
Why AI is not being used

- Do you/your team use AI in your professional activities?
- If not but you would like to:
 - What prevents you from doing so? (please name 1 3 biggest obstacles)
- If not and you would not like to:
 - Please explain briefly why

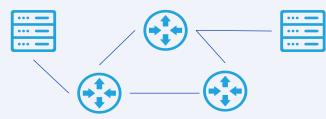
AI security

- Do you recognize AI-specific risks related to your organization?
 - If so, name top 3
- If you use AI, do you manage AI related risks?
 - If so, do you use specific framework or standard?

Al Risk Management Framework


Figure: NIST AI RMF Playbook

https://airc.nist.gov/airmf-resources/playbook/


Programmable ICT infrastructures

- ICT infrastructures as a foundation for digital transformation
 - Private/public/hybrid clouds
 - Mobile networks (5G)
 - Protected Core Network (concept in Federated Mission Networking)
- Modern infrastructures are programmable and model-based...
- ... which allows for automation of deployment, management and orchestration

Descriptor of 'skeleton PCN infrastructure' (snippet)

Instantiation of PCN 'skeleton infrastructure' in the cloud

Al everywhere – also in ICT infrastructures

- Vision: next-generation infrastructures will be:
 - intent-based,
 - self-managing,
 - self-organizing
 - self-defending.
- Behind each 'self-*' feature, there will be AI system
 - Predictive AI: anomaly detection, event classification,...
 - Generative AI: log analysis, playbook generation,...

Create IPTABLES rule to allow only HTTPS traffic

Your personal and company data are protected

Sure, here is a simple rule in IPTABLES to allow only HTTPS traffic:

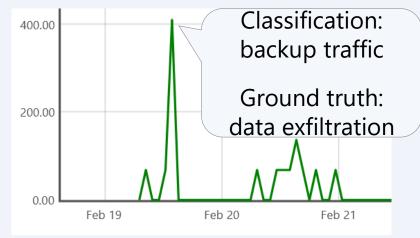
```
# First, set the default policy of INPUT chain to DRDP sudo iptables -P INPUT DROP

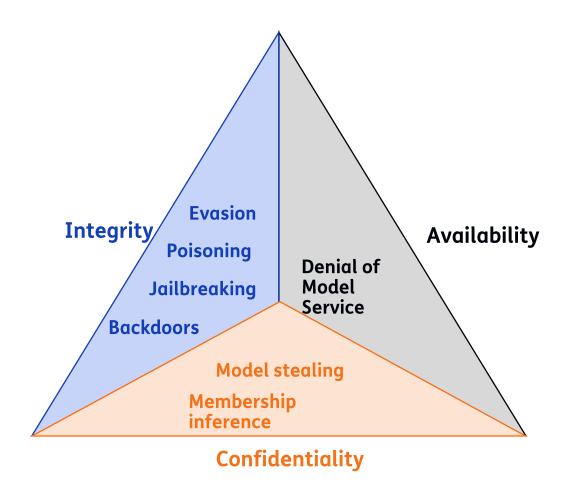
# Then, allow only HTTPS traffic sudo iptables -A INPUT -p tcp --dport 443 -j ACCEPT

# Allow established connections
```


Al poses new type of security problem in ICT infra

- AI systems can become targets on their own
- New, "data-centric" type of attack, different from current cybersecurity problems
 - Poisoning training data may lead to attack classified as good traffic
 - Prompt injection may lead to malicious code execution


- Most research in image recognition (stop sign example)
- Less so in ICT infra use cases

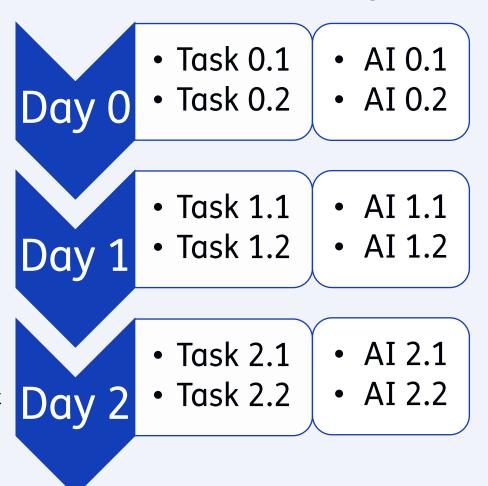


Adversarial Input

The CIA triad for AI model and application security

TNO activities in AI security within ICT infra context

- ADVICE Adversarial AI in ICT Infrastructures
 - Jointly with NCIA as strategic partner, part of TNO appl.ai multi-year programme
 - Identification of adversarial scenarios in various phases of ICT infra lifecycle
- FNS Future Network Services
 - TNO leads ecosystem of 60 partners working on 6G, sponsored by Dutch govt.
 - AI-based (LLM) generation of 6G configs and software as one of the tasks
 - Reach-out to standardization
- Red Teaming AI
 - Internal TNO knowledge building project
 - Ethically attacking your own AI systems to find vulnerabilities



Adversarial scenarios in ICT infrastructure lifecycle

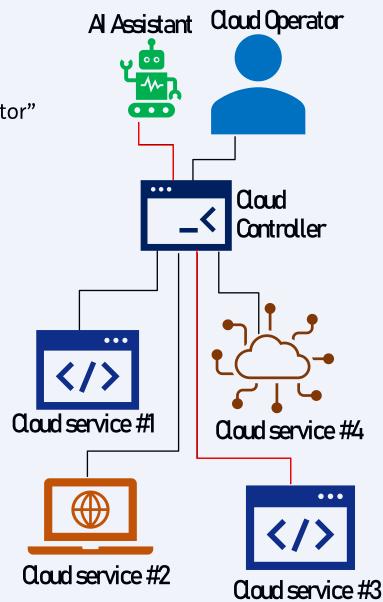
- We model lifecycle using "Days" structure (see [ETSI_NFV022],[ETSI_OSM])
 - Day 0: Design and plan
 - Day 1: Deployment
 - Day 2: Operations and maintenance
- For each Day, enumerate specific Tasks
 - Example: Day 0, Task 1: Understand strategic/business goals that the ICT system will fulfill
 - For each Task, identify AI technique that can be used to fulfill it
 - Example (cnt'd): use LLM as idea generator/sparring partner

[ETSI_NFV022] ETSI GR NFV-EVE 022 "Network Functions Virtualisation (NFV) Release 5; Architectural Framework; Report on VNF configuration"

Adversarial scenarios in ICT infrastructure lifecycle

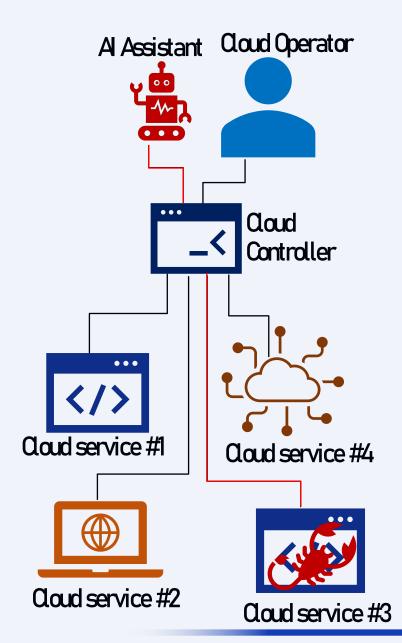
- Next, for each AI technique, identify adversarial AI technique
 - Example (cont'd):
 - AI: use LLM
 - AdvAI: Data extraction
- Attempt to assess 'risk index' (RI) using e.g., CVSS4
- Consider mitigation measures, both:
 - 'classic' e.g., access control
 - AI-specific e.g., prompt sanitizing

- Task 0.1
- Task 0.2
- AI 0.1
- AI 0.2
- AdvAI 0.1
- AdvAI 0.2
- RI 0.1
- RI 0.2

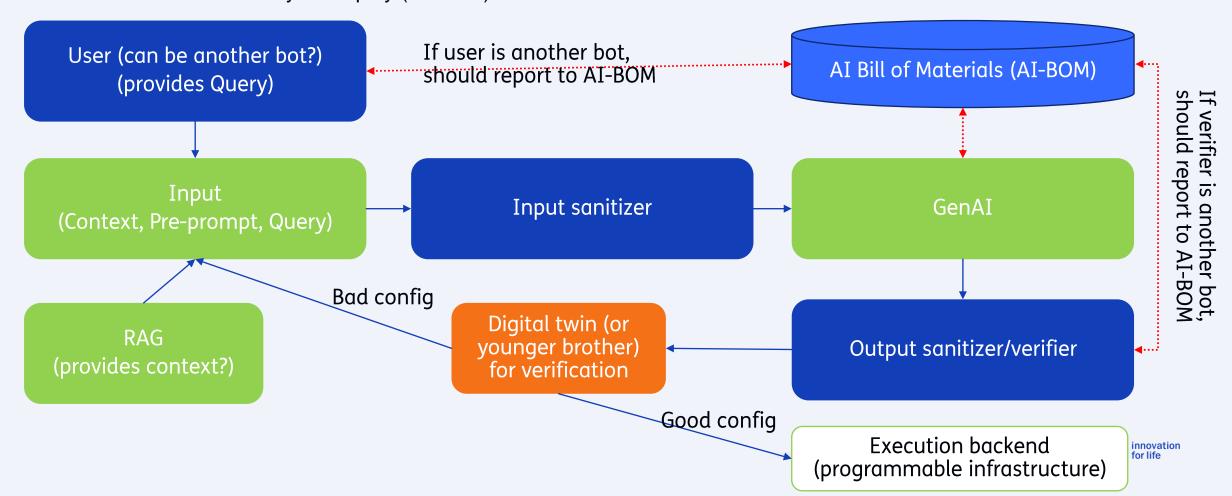

- Day 1
- **Task 1.1**
- Task 1.2
- AI 1.1
- AI 1.2
- AdvAI 1.1
- AdvAI 1.2
- RI 1.1
- RI 1.2

- Day 2
- Task 2.1
- Task 2.2
- AI 2.1
- AI 2.2
- AdvAI 2.1
- AdvAI 2.2
- RI 2.1
- RI 2.2

Proof-of-Concept


- Part of the results being integrated in ETSI SAI WI-011 "Security aspects of using AI/ML techniques in telecom sector"
- One selected scenario worked-out as proof-of-concept
 - Day 2: Operations and maintenance
 - Task(s):
 - Reasoning, events analysis,
 - Course-of-Action execution
 - AI: LLM + tooling
 - error msg in, explanation out
 - agency: explanation is actionable
 - AdvAI: Prompt manipulation/AI-supply chain attack
 - Not detectable by current malware analysers etc.

Proof-of-Concept scenario


- Human Cloud Operator deploys various services in edge/tactical cloud
 - Kubernetes as cloud operating system
- AI Assistant provides troubleshooting capabilities
 - Analysis and explanation (Llama + k8sgpt)
 - Taking action, based on above analysis (TNO)
- However, AI Assistant is also new attack surface
 - Adversary poisons software update
 - Malicious instructions reach AI Assistant
 - Classis antivirus cannot detect this threat

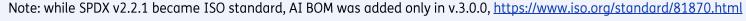
Better workflow? (W.I.P.)

- Both unintentional and intentional harm possible sanitize both input and output for/of GenAl
- Verify/validate before deploying in production, if problems/errors, cycle back to LLM for corrected config
- Be mindful of what AI you employ (AI-BOM)

Al Bill of Materials (Al-BOM) ... but S-BOM first

- Point of departure: Software Bill of Materials (S-BOM)
 - Inventorize software (versions, licenses, libraries, dependencies,...)
 - Store information in machine readable format
- S-BOM also helps in mitigating security risks:
 - List of know vulnerabilities, also from 3rd party software
 - If new vulnerability is disclosed, SoC knows if/where the problem is
- Two well known examples:
 - SPDX (Linux Foundation)
 - CycloneDX (OWASP)¹

```
"bom-ref": "brick/math-0.9.3.0",
"type": "library",
"name": "math",
"version": "0.9.3",
"group": "brick",
"description": "Arbitrary-precision arithmetic library",
"licenses": [
        "license": {
            "id": "MIT"
"purl": "pkg:composer/brick/math@0.9.3",
"externalReferences": [
        "type": "distribution",
        "url": "https://api.github.com/repos/brick/math/zipball/ca57
    },
        "type": "vcs",
        "url": "https://github.com/brick/math.git"
```

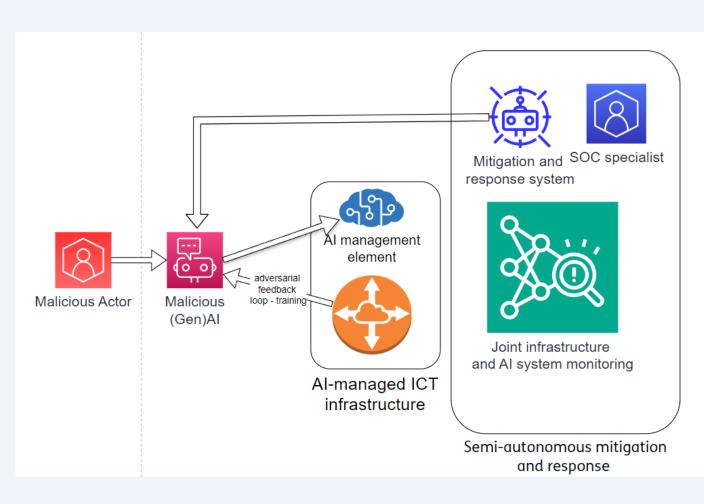


¹SBOM snippet from <u>bom-examples/SBOM/laravel-7.12.0/bom.1.4.json at master · CycloneDX/bom-examples · GitHub</u>

AI Bill of Materials (AI-BOM)

- Builds on top of S-BOM concept: inventorize components of AI system
- Many fields in AI-BOM can be identical to S-BOM (package version, location,...)
- However, AI-specific information can also be captured
 - Type of model, data preprocessing steps, human-in-the-loop,...
 - Information about data used to train the model can also be part of AI-BOM
 - If data source was poisoned, AI-SoC knows if/where the problem is
- Both SPDX and CycloneDX have AI/ML modules
- AI-BOM can help in becoming compliant with regulations
 - E.g., SPDX offers mapping of AI Act clauses to AI-BOM features, see <u>link</u>

Sub-	EU <mark>Al Act</mark> description and clause	In AI	Matching field in	SPDX
categories		BOM?	AI BOM	profile
System classi- fication	"A short summary of the grounds on which the AI system is considered to be not-high- risk in application of the procedure under Article 6(3)" - Annex VIII Section B (7)	V	informationAboutApplication; hasDocumentation relationship	Al, Core



Next steps: make AI in ICT infra more secure

- Plans for 2025:
 - 1. Detecting attacks against AI in (military) ICT infrastructures context (->IST-221)
 - 2. (Semi-autonomous) mitigation and response to detected attacks
- Contact
 - piotr.zuraniewski@tno.nl
 - <u>konrad.wrona@ncia.nato.int</u>

