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Abstract. Detecting and mapping subsidence is currently supported by interferometric synthetic aperture radar
(InSAR) products. However, several factors, such as band-dependent processing, noise presence, and strong sub-
sidence limit the use of InSAR for assessing differential subsidence, which can lead to ground instability and
damage to infrastructure. In this work, we propose an approach for measuring and mapping differential subsi-
dence using InSAR products. We consider synthetic aperture radar (SAR) data availability, data coverage over
time and space, and the region’s subsidence rates to evaluate the need of post-processing, and only then we
interpret the results. We illustrate our approach with two case-examples in Central Mexico, where we process
SAR data from the Japanese ALOS (L-band), the German TerraSAR-X (X-band), the Italian COSMO-SkyMed
(X-band) and the European Sentinel-1 (C-band) satellites. We find good agreement between our results on dif-
ferential subsidence and field data of existing faulting and find potential to map yet-to-develop faults.

1 Introduction

Several locations around the world experience land subsi-
dence due to groundwater extraction (e.g. Gambolati and
Teatini, 2015; Semple et al., 2017). Central Mexico alone,
has more than twenty urban areas reported as subsiding
(Brunori et al., 2015; Cabral-Cano et al., 2008; Chaussard
et al., 2017; Pacheco-Martínez et al., 2015). More impor-
tantly, spatial variation of subsidence in several of such lo-
cations has led to differential subsidence and, consequently,
to ground faulting and infrastructure damage (Avila-Olivera
and Garduño-Monroy, 2008; Pacheco-Martínez et al., 2013).

City-scale subsidence patterns and rates have been charac-
terized since the 1940’s using multiple geodetic techniques.
In recent decades, InSAR measurements have allowed the
mapping of large subsiding areas at the scale of entire cities

and with frequent observations (e.g. Amelung et al., 1999;
Hoffmann et al., 2001). However, several factors limit the
application and interpretation of InSAR results for differen-
tial subsidence mapping, such as data availability, processing
particularities, data integration, and signal interpretation in
the presence of strong subsidence.

In this work, we illustrate an approach focused specifically
on detecting and mapping differential subsidence based on
SAR data from different platforms, elevation data and basic
field information. We illustrate our approach with two case
studies in Central Mexico, which have different subsidence
characteristics and different data availability. The ultimate
goal of our approach is to share the expertise we have ac-
quired after studying several cases of differential subsidence
for expanding its application to other areas with data avail-
ability constrains.
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Figure 1. Schematic illustration describing the concept of repeat-
pass InSAR. The interferogram was calculated from a COSMO-
SkyMed SAR pair acquired on 3 April and 30 June 2012 over Mex-
ico City. Point A is a stable area known as Chimalhuache hill. Point
B is located close to Peñón de los Baños. Point C is located over
Benito Juárez International Airport. Shaded relief from SRTM data.

2 Materials and Methods

We propose using SAR data, a digital elevation model
(DEM) from the Shuttle Radar Topography Mission (SRTM)
mission, and surface field data when available.

We rely on four SAR datasets, of which two cover
Aguascalientes and two Mexico City. The two datasets
covering Aguascalientes consist on 34 ALOS PALSAR
scenes acquired form August 2007 to March 2011 and six
TerraSAR-X acquired from December 2009 and Septem-
ber 2012. The two datasets covering Mexico City consist of
144 Sentinel-1 scenes acquired from 2014 to 2017 and 21
COSMO-SkyMED scenes acquired from December 2011 to
June 2012. We process the SAR using InSAR techniques,
which relies on the existence of at least two satellite acqui-
sitions to perform pixel-wise phase differences to generate a
map of interferometric phase differences, so-called interfer-
ogram (Fig. 1).

We perform single-interferogram processing using the
Delft object-oriented radar interferometric software (Doris)
(Kampes et al., 2004) and time series processing using ei-
ther the Stanford Method for Persistent Scatterers (StaMPS)
(Hooper et al., 2007) or the Miami InSAR time-series soft-
ware in Python (MintPy) (Yunjun et al., 2019). Additionally,

we perform post-processing of the InSAR velocity maps re-
sults using subsidence gradient (Cabral-Cano et al., 2008) or
band pass filtering (Solano-Rojas, 2018).

3 Case studies

3.1 Aguascalientes

The valley of Aguascalientes experiences subsidence rates
of up to 100 [mm yr−1] due to overexploitation of its aquifer
system (Chaussard et al., 2014). The city is located within
a tectonic graben (Fig. 2a). The topographic slopes map of
the area shows flat topography in the middle of the graben,
which forms the valley (Fig. 2b). Mapped surface faults in the
region show that the graben-delimiting faults are orientation
roughly NE–SW, in agreement with the topographic slopes.
The InSAR velocity map from ALOS data (Fig. 2c) shows
a clear subsidence pattern within the graben, in agreement
with previous observations (Pacheco-Martínez et al., 2015).
However, the graben limits do not exactly coincide with the
transition between subsiding and stable areas (see northern
portion of the eastern main fault). There seems to be, instead,
a better agreement between the topographic slope map and
the faults location.

High-resolution single interferograms produced with pairs
of TerraSAR-X (TSX) images (Fig. 2d–g) reveal a-few-
fringes patterns in the easternmost portion of the study area,
as opposed to the many-fringes pattern observed in the cen-
tre of the interferograms. Evidently, interferograms compris-
ing a longer time span shows a more complex interferomet-
ric pattern, due to the accumulation of subsidence (compare
Fig. 2d vs Fig. 2f, for instance). The discontinuities in the
phase coincide well with the presence of the field-surveyed
surface faulting. As a matter of fact, the interferometric pat-
tern shows additional phase discontinuities that may corre-
spond to not-yet mapped or not-yet-developed surface faults.
We interpret that these phase discontinuities.

3.2 Mexico City

Mexico City is one of the largest and most populated urban
areas in the world. The city was built on a highly compress-
ible lacustrine sediment sequence, which has been subjected
to fast land subsidence with rates exceeding 350 mm yr−1, in
response to aggressive groundwater extraction,

Our Sentinel-1 InSAR velocity map from 2014 to 2017
(Fig. 3a) shows that Sierra de Santa Catarina is stable, while
its surroundings subside rapidly (∼ −400 mm yr−1). We cal-
culate a gradient velocity map, which shows the highest val-
ues around Sierra de Santa Catarina (Fig. 3b). Additionally,
we calculate a velocity map from the COSMO-SkyMed con-
stellation data and obtain the boundaries of sharp transition
between highly-subsiding and highly-uplifting (Fig. 3c). The
areas of pronounced differential displacements agree well
with the location of pre-existing, subsidence-related faults
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Figure 2. Case example of differential subsidence analysis over Aguascalientes Valley. (a) Satellite image (source: © Esri, Digital Globe,
GeoEye, Earthstar Geographics, CNES Airbus, USDA, USGS, ADX, Getmapping, Aerogrid, IGN, swisstopo, and the GIS community)
overlaid by locations of groundwater-extraction wells in the area. Red lines represent faults mapped in the city. (b) Slopes map from SRTM
topographic data. Red square shows the limits of (d)–(g). (c) Velocity map from 34 ALOS PALSAR scenes acquired form August 2007
to March 2011. (d)–(g) High resolution interferograms of Aguascalientes’ urban area from TerraSAR-X data. Each fringe corresponds to
1.55 cm of subsidence.

identified during 10 years of field surveys (CENAPRED,
2017).

4 Conclusions

The proposed approach shows the capability of multiplat-
form, multiresolution InSAR for detecting and mapping dif-
ferential subsidence and surface faulting. The strategic ad-
vantage of this approach is its reliance on mostly available
products (i.e. SAR data, SRTM DEM, basic field surveys).
Medium-resolution results from ALOS and Sentinel-1 satel-
lites depict well the larger-scale subsidence patterns. De-
tailed faulting cartography in the urban area coincide with
phase discontinuities in this interferograms produced with
higher-resolution data from TerraSAr-X, with potential for
mapping of not-reported faults and improved understanding
of the subsurface.

Additionally, post-processing techniques from both low
resolution (such as subsidence gradient) and high resolu-
tion (such as band-pass filtering) datasets provide a tool for
improving the understanding of differential subsidence, as
shown in the Mexico City study case. Differential subsidence
shows to be particularly large in areas of sharp geotechnical
transitions denoted by topographic slope changes.

Data availability. The SAR data that support the findings of
this study are available from e-GEOS (http://www.e-geos.it) (Ital-
ian Space Agency, 2020), the German Space Agency (DLR:
http://www.dlr.de) (German Aeroespace Center, 2020), the Euro-
pean Space Agency (ESA: https://www.esa.int) (European Space
Agency, 2020) and the Japan Aerospace Exploration Agency
(JAXA: http://www.global.jaxa.jp) but restrictions apply to the
availability of these data, which were used under license for the
current study (Japan Aerospace Exploration Agency, 2020). The to-
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Figure 3. Case example of differential subsidence analysis over South Mexico City. (a) Velocity map from 144 Sentinel-1satellites acquired
from 2014 to 2017. (b) Horizontal gradient calculated from (a). (c) Areas of differential subsidence calculated from high-resolution COSMO-
SkyMED data. (d) 10-year worth of subsidence-related shallow faults mapped by the city’s government (CENAPRED, 2017). Shaded relief
from SRTM data.

pographic data used for shaded relief maps and topographic cor-
rection of InSAR results are available in the USGS repository
(https://earthexplorer.usgs.gov/) (Farr et al., 2007). The InSAR re-
sults are available from the corresponding author upon reasonable
request.
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