Automated testing of protection with Omicron and Python

07-02-2024

VOOR DE NIEUWE ENERGIEGENERATIE

ABOUT STEDIN

- Distribution grid operator in most of South Holland and the provinces Utrecht and Zeeland
- More than 2.3 million households
- Our grid in numbers :

Туре	Amount
Primary (25/60/66 kV)	~186
MV Transport (10/13/21/23 kV)	~400
Secondary (0.4 kV)	~23,000

Electricity- and gas area

Testing of IEDs

- IEDs are the backbone of the substation
- Proper operation of the protection functions is of utmost importance
- Each IED is tested for correct operation of every protection function that is active:
 - Thresholds
 - Reaction times
- Testing is mainly done "inside" and with secondary currents / voltages
 - Primary values are used only in special occasions
- Omicron hardware and software are used as testing equipement

Testing setup

VOOR DE NIEUWE

ENERGIEGENERATIE

STED N^{NET}

IEC 61850 IN A NUTSHELL (1)

DATA MODEL

Unified names for (amongst others):

- PD Voltage level/section/IED
- LD Object group (CTRL/PROT)
- LN Object/function (XCBR/PTOC)
- DO Details (stVal/Str.phsA)

DT1K1Q02A1/PTOC.Str.phsA (104 = 666958)

IEC 61850 IN A NUTSHELL (2)

COMMUNICATION

MMS (Manufacturing Message Specification)

- Based on TCP/IP routable across networks
- Client/server communication is verified GOOSE (Generic Object Oriented Substation Event)
- Based on Ethernet local network
- Multicasts messages are published
- Direct sending for events and periodic messages (heartbeat)

SV (Sampled Values)

- Based on Ethernet local network
- Multicasts one-way communication
- Flow of messages with sampled ratings of 4000/12800 samples/sec – 5,3/12,5 Mb/sec

VOOR DE NIEUWE

ENERGIE GENERATIE

Omicron Hard-wired vs. GOOSE

PROTECTION, TIME MEASURING AND TRIPS

Omicron HARD-WIRED VS. GOOSE

PROTECTION TESTING WITH HARD-WIRED CONNECTIONS

Measuring the reaction time of the start/trip contacts using hard-wired connections

- All protection functions send start/trip signals
- Often only testing per protection functions, disabling conflicting protection functions
- <u>Testing distributed protection schemes</u> <u>is complex and time-consuming</u>

Omicron HARD-WIRED VS. GOOSE

PROTECTION TESTING WITH GOOSE

Measuring the reaction times of the start/trip signals with GOOSE

- Time measurements per protection function (for example I> or I>>).
- Subscriptions, as well as simulations of GOOSE messages, are possible
- Testing of distributed protection schemes is very easy by sending the signals over the network

(for example reverse-blocking protection)

STED N.

VOOR DE NIEUWE

ENERGIEGENERATIE

HOW WE AUTOMATE IN STEDIN

Standard OCC template

- Adjusted to the standard protection functions that we use
- GOOSE configuration included
- Distributed protection schemes also present

Tooling - NA beveiligingApp

Creating XRIO files

Spannii	igs-		Veldnummer	Veldtype	Richting	l > Pri	l > Se	c t>	I >> Pri	l≫ Se	c t≫	le> Pr	i le> Sec	t le	Bepaling le	le>> Pri	le>> Sec	t le>>	lneg Pri	Ineg Sec	t Ineg	Opw I>>	Opw le>>	Bepaling ASRI	Frequent ie trip	t Bepal ASRI									
niveau	u Oud Nieuw			[A]	[A]	[s]	[A]	[A]	[s]	[A]	[A]	[s]		[A]	[A]	[s]	[A]	[A]	[s]	Blokk	Blokk		[Hz]												
104	,		101	Afgaand veld	Paganya	90	1.13	0.30	120	1.50	0.00	60	0.75	0.00								OB I>	OB le>		48.4										
TOK	·		101		Arguanto velo	Alguana vela	Alguaria vela	Alguaria vela	Alguaria vela	Reserve																									
104	v	WV	AV.	,		102 A foas	102	Afgaand veld	Groenhovenweg Zuid	360	4.50	0.60	2500	31.25	0.30	100	1.25	0.60								OB I>	OB le>		48.4						
TOK	·	-	102	Arguana vela	Alguano velo	Arguand Volu	Angualita Vola		Alguand Vela	Arguana vela	Alguana vela	Alguaria vela	Arguana vola	Arguaria Vola	Crocking Zula																				
104	v	v	-	103	Afread veld	Depenve	90	1.13	0.30	120	1.50	0.00	60	0.75	0.00								OB I>	OB le>		48.4									
TUR	·	-						105	Alguana volu	Reserve																									
10447	,		104	A facend wold	Nieuwe Couwe 0 7 18	360	4.50	0.60	2500	31.25	0.30	100	1.25	0.60								OB I>	OB le>		48.4										
TUN	NY I	*			Algaalid Veld	- 104	Medwe Godwe 0.2. 10								_																				

Invu	blok										
St	at Name	ID	Foreign ID	Description	Reference value	Value		Unit	Min	Max	For
►	USER_NAME	USER_NAME		Gebruikersnaam	Nicola Tesla	3					
1	STATION	STATION		Stationsnaam	Stationnaam	1	Test				
1	STATIONNR	STATIONNR		Stationsnummer	TX1234	ļ.	TX12				
1	UNOM	UNOM		Spanningsniveau (pri)	10.5	5	50.0	kV	0.0	+inf	
1	UNOM_SEC	UNOM_SEC		Nominale spanning (sec)	110)	100	V	0	250	
1	GEAARD	GEAARD		Geaard net	2		1				
1	VELDNR	VELDNR		Veldnummer	101		102				
1	VELDTYPE	VELDTYPE		Type veld	Afgaand veld	i i	Afgaand veld				
1	RICHTING	RICHTING		Richtingnaam	Richting	1	Richting				
1	TYPE_BEVEILIGING	TYPE_BEVEILIGING		Type beveiliging	OMT	-	OMT				
1	LEVERANCIER	LEVERANCIER		Leverancier	Sprecher	г	Sprecher				
1	FIRMWARE	FIRMWARE		Firmwareversie IED	8.64k	t.					
1	SERIENR	SERIENR		Serienummer van IED	33110525/G002	2					
1	MOTA_TYPE	MOTA_TYPE		MOTA Type	Type C1		Type C1				
1	IP	IP		IP addres	10.0.0.0)					
1	I_PRI	I_PRI		Primaire stroom van de CT	600)	1200	Α	0	+inf	
1	I_SEC	I_SEC		Secundaire stroom van de CT	1		1				
1	CT_SP_BUS	CT_SP_BUS		CT sterpunt richting rail (is true)			1				
1	SETTINGGROUP	SETTINGGROUP		Settinggroup	1		1		0	4	
1	I1_PRI	I1_PRI		l> primair	300)	C	Α	0	+inf	
1	11_T	11_T		l> tijd	0.9)	0.0	s	0.0	+inf	
1	I2_PRI	I2_PRI		l>> primaire	1200)	C	Α	0	+inf	
1	12_T	12_T		l>> tijd	0.0)	0.0	s	0.0	+inf	
1	le_PRI1	IE_PRI1		le> primair	150)	C	Α	0	+inf	
1	IE_T	IE_T		le> tijd	0.5	5	0.0	s	0.0	+inf	
1.1.	100 001	100 DD1			0.00		0.00	•	0.00		

STEDIN^{MET} VOOR DE NIEUWE ENERGIEGENERATIE

Creating GOOSE configuration files (1)

Creating GOOSE configuration files (2)

BUT ALSO....SIMULATION OF GOOSE

Example CASE - REVERSE-BLOCKING Scheme (1) THEORY

Outgoing feeder

Outgoing feeder

Example CASE - REVERSE-BLOCKING Scheme (2) HARD-WIRED TESTING

Example CASE - REVERSE-BLOCKING Scheme (3) GOOSE-BASED TESTING

- Divided in two parts
- Part 1: Whether the outgoing feeders send the correct GOOSE messages for blocking
- Part 2: Whether the incoming feeders are actually blocked at the receiving of those GOOSE messages
- Faster testing in this manner due to less rewiring

Example CASE - REVERSE-BLOCKING Scheme (3) GOOSE-BASED TESTING PART 1:

Example CASE - REVERSE-BLOCKING Scheme (3) GOOSE-BASED TESTING PART 2:

HOW DOES IT WORK IN PRACTICE

_

_

C:\Users\milan.jankovski\Desktop\OMICRON presentatie\GOO

TEDIA .NET **VOOR DE NIEUWE ENERGIE**GENERATIE

GOOSE config

COMMO.P	
COMM3 .p	
Exit	

COMM3 n

CONCLUSIONS

- GOOSE testing = less wiring = less time consuming
- Separated testing per function = more efficient testing
- Automated tool = less hand-filled data = less error-prone
- Python allows for easy and automated creation of OCC files
- Distributed protection schemes become easy to be tested

THANK YOU FOR YOUR ATTENTION

VOOR DE NIEUWE ENERGIEGENERATIE

日田田