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Objectives

Objectives

The singles, doubles and triples rates of detected neutrons, used in
non-destructive assay, are based on the first three factorial moments of the
number of particles emitted from a fissile item per one source event.

These factorial moments (“Böhnel moments”) were traditionally derived in the
so-called point model, in which the space, angular and energy dependence of
the neutron transport is neglected.

In present work, we extended the calculation of the factorial moments to
include space, angular and energy dependence, as well as to include
scattering.
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Space-dependent model

Extension to a one-speed transport model

To start with, spherical geometry will be considered, and (α,n) reactions
neglected

Distances are expressed in units of the mean free path

The number distribution pf (n) of neutrons from an induced fission (subscript
f ) and from a source event ps(n) (subscript s) as well as their generating
functions will be denoted as

pf (n); qf (z ) =

∞∑
n=0

pf (n) zn ; and ps(n); qs(z ) =
∞∑

n=0

ps(n) zn .

These are known quantities.

In the calculations, we will need the first three factorial moments νf ,i and νs,i ,
i = 1,2,3 of these distributions, i.e.

νf ,i =

∞∑
n=0

n (n − 1)...(n − i + 1) pf (n) =
diqf (z )

dz i

∣∣∣∣
z=1

(1)
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Space-dependent model

Equations for a sphere

Variables in spherical geometry:

- the radial position r of the starting neutron
- the cosine µ of the polar angle ϑ between the position vector and the velocity
vector of the neutron
- `(r , µ) is the distance to the boundary from the point r along µ.

R

ℓ r, μ

ϑ
r

R
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Space-dependent model

Equations for a sphere: single starting neutron

The equation for the probability distribution p(n | r , µ) that a source neutron with
coordinates (r , µ) will lead to the emission of n neutrons reads as

p(n| r ,µ) = e−`(r , µ) δn,1+

∫ `(r , µ)

0

ds e−s
∞∑
0

pr (k)
∑

n1+n2+···+nk=n

∫ 1

−1

dµ1

2

dµ2

2
. . .

dµk

2
×

p(n1| r ′(s), µ1) p(n2| r ′(s), µ2) . . . p(nk | r ′(s),µk ).

(2)

Here,
r ′ ≡ r ′(s) = |r ′| ≡ |r + sΩ] =

√
r2 + s2 + 2 r s µ, (3)

µk is the cosine between r ′ and Ω′k , and `(r ,µ) is given as

`(r ,µ) = −rµ+
√

(r µ)2 + (R2 − r2) = −rµ+
√

r2 (µ2 − 1) + R2. (4)
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Space-dependent model

Equations for the generating function

Introducing the generating function g(z | r , µ) of p(n| r , µ) in the usual way, i.e.

g(z | r , µ) =

∞∑
n=0

zn p(n| r , µ), (5)

one obtains the more compact equation

g(z | r ,µ) = z e−`(r ,µ) +

∫ `(r ,µ)

0

ds e−s qr [ g(z | r ′(s))] (6)

where g(z | r) is the “scalar” (angularly integrated) generating function and qr [...]
is the generating function of pr (k), with the quantity in the square brackets being
its argument.
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Space-dependent model

The scalar generation function by one source neutron

Introducing the scalar (angularly integrated) probability distribution as

p(n| r) =
1

2

∫ 1

−1
dµ p(n| r ,µ), (7)

and its generating function

g(z | r) =

∞∑
n=0

zn p(n| r), (8)

we arrive to the substantially simpler equation for the generating function:

g(z | r) = z g0(z | r) +
1

2

∫ 1

−1
dµ

∫ `(r ,µ)

0

ds e−s qr [g(z | r ′(s))] (9)

where

g0(z | r) =
1

2

∫ 1

−1
dµ e−`(r ,µ). (10)

and qr (z ) =

∞∑
k=0

z k pr (k).
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Space-dependent model

The source event induced distribution

The expression for the generating function G(z ) of the source event induced
distribution reads as

G(z ) =
1

V

∫
V

dr qs [ g(z | r)] =
3

R3

∫ R

0

r2 qs [g(z | r)] dr (11)

is not affected by the inclusion of new reaction types;

not an equation to be solved, only a recipe how to calculate G(z ), or its
moments from the scalar single-neutron induced generating function g(z | r).
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Moments

Factorial moments n,N ;m,M and w ,W

From (9) and (11), equations can be derived for the moments by derivation.

First moments:
∂

∂z
g(z | r) |z=1 = 〈n(r)〉 ≡ n(r), (12)

and
∂

∂z
G(z ) |z=1 = 〈N 〉 ≡ N = ν1. (13)

Second moments:

∂2

∂z 2
g(z | r) |z=1 = 〈n(r) (n(r)− 1)〉 ≡ m(r) (14)

and
〈N (N − 1)〉 ≡ M = ν2 (15)

Third moments

∂3

∂z 3
g(z | r) |z=1 = 〈n(r) (n(r)− 1)(n(r)− 2)〉 ≡ w(r) (16)

and
〈N (N − 1) (N − 2)〉 ≡W = ν3. (17)
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Moments

Results: single neutron induced moments

From (9), the following equations can be derived for the first three factorial
moments of the number of particles leaving the sample:

First moment n(r ,µ) = e−`(r ,µ) + νr ,1

∫ `(r ,µ)

0

ds e−s n(r ′(s)) (18)

Second moment m(r ,µ) = A(r , µ) + νr ,1

∫ `(r ,µ)

0

ds e−s m(r ′(s)) (19)

with

A(r ,µ) = νr ,2

∫ `(r ,µ)

0

ds e−s n2(r ′(s)). (20)

Third moment w(r ,µ) = B(r ,µ) + νr ,1

∫ `(r ,µ)

0

ds e−s w(r ′(s)) (21)

with

B(r ,µ) =

∫ `(r ,µ)

0

ds e−s
{
νr ,3 n

3(r ′(s)) + 3 νr ,2 n(r ′(s))m(r ′(s))
}

(22)
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Moments

Source event induced moments

Similarly, from (11), expressions can be derived for the source event induced
moments. These show that, in possession of the scalar single neutron induced
moments n(r), m(r) and w(r), these can be immediately calculated.

First moment:

N =
3 νs,1
R3

∫ R

0

r2 n(r) dr (23)

Second moment

M =
3

R3

∫ R

0

r2
{
νs,2 n

2(r) + νs,1 m(r)
}

dr (24)

Third moment

W =
3

R3

∫ R

0

r2
{
νs,3 n

3(r) + 3 νs,2 n(r)m(r) + νs,1 w(r)
}

dr (25)

Hence, we only need the scalar moments n(r), m(r) and w(r) in the continuation.
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Moments

Solution with a collision number expansion

The starting (zeroth) term consists of the expectation of the scalar non-collided part

n0(r) =
1

2

∫ 1

−1

e−`(r,µ) dµ.

The scalar once-collided part n1(r) is then given as

n1(r) =
νf ,1
2

∫ 1

−1

dµ

∫ `(r,µ)

0

ds e−s n0(r ′(s)) (26)

and in general, the kth term of the expansion is given as

nk (r) =
νf ,1
2

∫ 1

−1

dµ

∫ `(r,µ)

0

ds e−s nk−1(r ′(s)). (27)

The full solution for the scalar first moment is obtained by summing up to all collision
numbers, i.e.

n(r) =

∞∑
k=0

nk (r). (28)
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Moments

Results with the space-dependent model

Calculations were made for spheres, cylinders and shells with a central cavity

A comparison with the point model showed that the space-dependent model
predicts higher factorial moments.

More important, due to the above, the point model underestimates the fission
rate (and hence the mass of the fissionable isotope, i.e. that of the 240Pu).
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Moments

The geometries considered
R

ℓ x, μ
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Moments

Results with the space-dependent model

Calculations were made for spheres, cylinders and shells with a central cavity

A comparison with the point model showed that the space-dependent model
predicts higher factorial moments.

More important, due to the above, the point model underestimates the fission
rate (and hence the mass of the fissionable isotope, i.e. that of the 240Pu).
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Moments

Results with the space-dependent model

Space-dep

Point model

0.0 0.1 0.2 0.3 0.4
0

2

4

6

8

10

12

R (sphere radius in optical units)

N
(e
x
p
e
c
ta
ti
o
n
)

Mean value of emitted particles

Space-dep

Point model

0.0 0.1 0.2 0.3 0.4
0

100

200

300

400

R (sphere radius in optical units)

M
(s
e
c
o
n
d
m
o
m
e
n
t)

Second moment of emitted particles

Space-dep

Point model

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0

500

1000

1500

2000

R (sphere radius in optical units)

W
(t
h
ir
d
m
o
m
e
n
t)

Third moment of emitted particles

Figure 1: The first three factorial moments as functions of the radius of a sphere
containing 80% 239Pu and 20%240Pu, as calculated by the point model and the
space-dependent model
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Moments

Results with the space-dependent model

However, comparison with measurements made on the Rocky Flats Shells in
the MUSIC experimental program (collaboration between LANL and the
University of Michigan), the theoretical results predicted (much) lower
factorial moments than the measurements

The reason for the difference between measured and calculated values was
traced down to the neglection of scattering reactions

In a one-speed theory, elastic scattering can be incorporated with some
approximations.
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Moments

fdarby@umich.edu MUSiC Update 2

MUSiC (Meas. Uranium Subcritical Configurations)

• Rocky Flats shells (stacked shells of highly enriched 
uranium, 93% 235U) stacked from 13.25-59.85 kg, 
ranging from keff of 0.64-0.99

• Actively interrogated by Cf-252 point source placed 
in center of each configuration

• Measured with 3 by 4 array of 5.08 by 5.08 cm 
trans-stilbene crystals, shielded by tin-copper 
graded shielding
• Minimum measurement time of 60 min for each

OSCAR

166 cm

Rocky Flat Shells

(93% 235U)

Cf-252

Reference: LA-UR-21-31641
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Moments

Accounting for elastic scattering in a one-speed model

Assumptions:

the energy loss and anisotropy of the neutrons scattered elastically on heavy
nuclei is neglected

then, scattering can be treated as a fission event resulting in one neutron

can be handled analogously as the (α,n) neutrons in the source distribution

define the number distribution of neutrons pr (k) per reaction as

pr (k) = cf pf (k) + cel δk ,1 (29)

where

cf ≡
Σf

ΣT
; cel ≡

Σel

ΣT
and ΣT = Σf + Σel . (30)

This means that the moments νf ,i , i = 1,2,3 of induced fission have to be
replaced by the moments νr ,i of the number of secondaries per reaction:

νr ,i = cf νf ,i + cel δk ,1 (31)

Correspondingly, the optical path has to be scaled by the total cross section,
instead of the fission cross section as in the preceding work.
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Moments

Results
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Figure 2: The first three factorial moments as functions of the radius of a pure 239U
sphere, with and without elastic scattering being included.
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Moments

Discussion

Accounting for elastic scattering, the factorial moments increased, showing
the importance of including scattering

however, the calculated values increased too much, so there was still no
significant improvement in the agreement with measurements

the remaining reason is the lack of accounting for inelastic scattering. It
decreases the energy of neutrons to regions where the fission neutron
multiplicities are lower than at the average source energy

heuristic recipe: use the cross sections and the fission neutron multiplicities
at 1 MeV instead of the 2 MeV of the average source energy

with this fix, good agreement with the measurements were obtained (next
slide)

however, instead of a fix, a proper treatment of the inelastic scattering needs
to be included → extension to energy dependent transport calculations.
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Moments

Comparison between calculations and measurements
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Figure 3: Comparison of measured and calculated first, second and third moments of the
number of neutrons emitted from the Rocky Flats Shells (93.5% enriched 235U) for four different
outer radii at the neutron energy of 1 MeV
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Elastic and inelastic scattering with energy dependence

Elastic and inelastic scattering: energy-dependent transport
theory

(Elastic) scattering becomes anisotropic

but the generating function g(z | r , µ, E ), and hence also its moments, still
depend only on µ what regards the angular variable, and do not depend on
the azimuthal angle ϕ.

We need to introduce the energy dependent cross sections

Σf (E ), Σel(E ) and Σin(E ) (32)

and the total cross section ΣT (E ) ≡ Σ(E ) as

Σ(E ) = Σf (E ) + Σel(E ) + Σin(E ) (33)

In addition, the fission number distribution pf (n,E ), as well as its generating
function qf (n,E ) become dependent on the energy of the fissioning neutron.

This means that the factorial moments of neutrons per fission, νf ,i = νf ,i(E ) will
also be energy dependent. This is the main reason of the energy dependence of
the factorial moments of the neutrons emitted from the item.
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Elastic and inelastic scattering with energy dependence

Scattering functions

Further, the scattering functions (densities) for both the elastic and inelastic
scattering, as well as for the fission process, are needed:

fel(µ→ µ′,E → E ′), fin(µ→ µ′,E → E ′) and χ(E → E ′) (34)

Unlike in ordinary transport theory, the elastic, inelastic and fission scattering
functions cannot be combined into one common scattering function with a norm
> 1, because they have different number distributions.

The energy and angular dependence of these two scattering functions will be
discussed in the following.
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Elastic and inelastic scattering with energy dependence

Scattering functions

Elastic scattering

Elastic scattering is not isotropic in the lab system, and there is a direct
relationship between energy loss and the scattering angle:

fel(µ→ µ′,E → E ′) ≡ fel(µ0,E → E ′) =
∆(E ′ − αE)

(1− α)E
δ
(
µ0 − S(E ,E ′)

)
; E ′ ≤ E

(35)
with

α =

[
A− 1

A + 1

]2

, S =
1

2

[
(A + 1)

√
E ′

E
− (A− 1)

√
E

E ′

]
, (36)

Here ∆(x ) = the unit step function, and µ0 = Ω ·Ω′ is the cosine of the scattering
angle. In the transport equation this term will therefore enter in the form

fel(Ω ·Ω′,E → E ′) =
∆(E ′ − αE )

2π (1− α)E
δ
(
Ω ·Ω′ − S (E ,E ′)

)
; E ′ ≤ E (37)

and will have to be integrated w.r.t. Ω′.
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Elastic and inelastic scattering with energy dependence

Inelastic scattering

Inelastic scattering

It consists of both discrete level and a continuum scattering

Inelastic scattering from heavy nuclei can be regarded isotropic in the laboratory
system.

Hence, one has

fin(µ0,E → E ′) =
1

2
fin(E → E ′) =

fin,d(E → E ′)

2
+

fin,c(E → E ′)

2
; E ′ ≤ E

(38)
Discrete level scattering

From kinematic considerations, the energy loss function for inelastic scattering with
excitation to energy level Qk is given as

fin(E → E ′ |Qk ) =
1

E (1− α)
√

1− εk/E
(39)

for (
A
√

1− εk/E − 1

A + 1

)2

E ≤ E ′ ≤

(
A
√

1− εk/E + 1

A + 1

)2

(40)

and 0 otherwise.
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Elastic and inelastic scattering with energy dependence

Inelastic scattering (discrete levels)

In the above,

εk =
A + 1

A
Qk (41)

Thus for discrete level scattering, the inelastic scattering function is given by
summing up for all excitation levels:

fin,d(E → E ′) =
∑
k

pk (E )fin(E → E ′ |Qk ) (42)

where

pk (E ) =
σk (E )∑
i
σi(E )

(43)

is the conditional probability that the inelastic scattering with neutron energy E
will excite the energy level Qk of the nucleus.
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Elastic and inelastic scattering with energy dependence

Inelastic scattering (continuum)

Continuum scattering

the levels are assumed to be continuously distributed from a certain threshold
energy Q0 with level density w(Q);

The neutron cross section σk (E ) for scattering with excitation of level k is
replaced by σ(E ,Q), i.e. with the cross section for scattering with excitation
of a level with energy Q.

the probability pk is replaced by p(E ,Q), by including the level density

p(E ,Q) =
σ(E ,Q)w(Q)∫
σ(E ,Q)w(Q) dQ

(44)

Hence, we finally have

fin,c(E → E ′) =

∫
p(E ,Q)fin(E → E ′|Q) dQ . (45)

For fixed E’ (and E) the range of Q can similarly be determined as in the discrete
case, but it will not be described here.

I. Pázsit, Chalmers Noise for safeguards Delft, 2024-09-10 28 / 41



Elastic and inelastic scattering with energy dependence

Energy dependent master equation

Because the elastic scattering is anisotropic, one cannot write down an equation
directly for the (energy dependent) scalar generating function and its moments,
one has to keep the angular dependence.

Generating function:

g(z | r , µ, E) = z e−`(r,µ)Σ(E) +
Σel(E)

2π(1− α)E
times

displaystyle
∫ `(r,µ)

0
ds e−s Σ(E)

∫ E

αE
dE ′

∫ 1

−1
dµ′

∫ 2π

0
dϕ′ δ (Ω ·Ω′ − S(E ,E ′)) g(z | r ′(s), µ′, E ′) +

Σin(E)

∫ `(r,µ)

0

ds e−s Σ(E)

∫ E

0

dE ′ fin(E → E ′) g(z | r ′(s), E ′) +

Σf (E)

∫ `(r,µ)

0

ds e−s Σ(E) qf

[∫ Emax

0

dE ′ χ(E → E ′) g(z | r ′(s),E ′), E ′
]

(46)

where
g(z | r , E ) =

1

2

∫ 1

−1
dµ′ g(z | r , µE ) (47)

is the“scalar”(angularly integrated) generating function of the leakage importance.
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Calculation of the elastic scattering term

Treatment of the elastic scattering

Due to the Dirac-delta function in the elastic scattering term, one should in
principle be able to calculate one integral analytically. However, this calculations is
by far not trivial.

First, we note that at a distance s from the starting point, the original cosine µ of
the neutron direction will be changed to

µ(s) =
s + r µ√

r2 + s2 + 2rsµ
. (48)

With this, the cosine of the scattering angle at the collision site can be written as

µ0(µ(s), µ′, ϕ′) =
√

1− µ2(s)
√

1− µ′2 cos(ϕ′) + µ(s)µ′, (49)

where µ′ and ϕ′ are the directional cosine and azimuthal angle of the outgoing
neutron, also with respect to the position vector of the neutron at r ′(s). (ϕ = 0).

Thus one has to perform the integral with the Dirac-delta function in the form

δ
(√

1− µ2(s)
√

1− µ′2 cos(ϕ′) + µ(s)µ′ − S (E ,E ′)
)

(50)
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Calculation of the elastic scattering term

Elastic scattering term (cont)

The integral of (50) was attempted w.r.t. both µ′ and ϕ′, without success.

But following Davison (advice of M.M.R. Williams), it turns out that the
integration with respect to the energy, with the given form of S (E ,E ′) in (36) can
be performed analytically.

To this end we write

δ
(
Ω ·Ω′ − S (E ,E ′)

)
= δ

(
µ0 −

1

2

[
(A + 1)

√
E ′

E
− (A− 1)

√
E

E ′

])
=

= δ

(
µ0 −

(A + 1)E ′ − (A− 1)E

2
√
E E ′

) (51)
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Calculation of the elastic scattering term

The elastic scattering

Then, with a long algebra, using the expression for the Dirac-delta of a function of
a variable, one has

δ

(
µ0 −

(A + 1)E ′ − (A− 1)E

2
√
E E ′

)
=

2E

(A + 1)2

[
µ0 +

√
µ2
0 + A2 − 1

]2
√
µ2
0 + A2 − 1

δ(E ′−E ′0)

(52)
with

E ′0(µ(s), µ′, ϕ′) =
E

(A + 1)2

[
µ0 +

√
µ2
0 + A2 − 1

]2
(53)

Hence the scattering function of (37) can be written as

fel(Ω ·Ω′,E → E ′) =
1

4πA

[
µ0 +

√
µ2

0 + A2 − 1
]2

√
µ2

0 + A2 − 1
δ(E ′ − E ′0(µ(s), µ′, ϕ′)) (54)
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Calculation of the elastic scattering term

The generating function

With the above, the final form of the equation for the generating function will
look as

g(z | r , µ, E) = z e−`(r,µ)Σ(E) +

Σel(E)

4πA

∫ `(r,µ)

0

ds e−s Σ(E)×

∫ 2π

0

dϕ′
∫ 1

−1

dµ′

[
µ0 +

√
µ2

0 + A2 − 1
]2

√
µ2

0 + A2 − 1
g
(
z |r ′(s), µ′, E ′0(µ(s), µ′, ϕ′)

)
+ Σin(E)

∫ `(r,µ)

0

ds e−s Σ(E)

∫ E

0

dE ′ fin(E → E ′) g(z | r ′(s), E ′)

+ Σf (E)

∫ `(r,µ)

0

ds e−s Σ(E) qf

[∫ Emax

0

dE ′ χ(E → E ′) g(z | r ′(s),E ′), E ′
]

(55)
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Calculation of the elastic scattering term

Factorial moments

First moment (mean number of neutrons n(r , µ, E ) leaving the item)

n(r , µ, E) = e−`(r,µ)Σ(E) +

Σel(E)

4πA

∫ `(r,µ)

0

ds e−s Σ(E)×

∫ 2π

0

dϕ′
∫ 1

−1

dµ′

[
µ0 +

√
µ2

0 + A2 − 1
]2

√
µ2

0 + A2 − 1
n
(
r ′(s), µ′, E ′0(µ(s), µ′, ϕ′)

)
+ Σin(E)

∫ `(r,µ)

0

ds e−s Σ(E)

∫ E

0

dE ′ fin(E → E ′)n(r ′(s), E ′)

+ νf ,1(E) Σf (E)

∫ `(r,µ)

0

ds e−s Σ(E) [

∫ Emax

0

dE ′ χ(E → E ′)n(r ′(s), E ′)

(56)

It is indicated that the neutron multiplicities, and hence the factorial moments
νf ,i(E ) of the induced fission, are now energy dependent.

Similar equations are obtained for the second and third moments.
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Calculation of the elastic scattering term

Source event induced distributions

One needs the (normalised) energy spectrum χs(E ) of the source neutrons.

The generating function G(z ) of the number distribution of neutrons leaving
the item for a source event:

G(z ) =
1

R

∫
V

r2 qs

[∫
g(z |r ,E )χs(E ) dE

]
dr (57)

Only the scalar single particle induced genreation function appears in this
experssion, weighted with the energy spectrum χs(E ) of the source neutrons.

Hence, define the spontaneous fission spectrum weighted single particle induced
factorial moments as

n(r) ≡
∫

n(r ,E )χs(E ) dE ; m(r) ≡
∫

m(r ,E )χs(E ) dE

and

w(r) ≡
∫

w(r ,E )χs(E ) dE .

(58)
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Calculation of the elastic scattering term

Source event induced distributions

With these angularly integrated and source spectrum weighted moments, for a
spherical item, we obtain expressions ffor the moments N , M and W in perfect
analogy with those of the one-speed case, Eqs (23) - (25) as

N =
3 νs,1
R3

∫ R

0

r2 n(r) dr , (59)

M =
3

R3

∫ R

0

r2
{
νs,2 n

2(r) + νs,1 m(r)
}

dr (60)

and

W =
3

R3

∫ R

0

r2
{
νs,3 n

3(r) + 3 νs,2 n(r)m(r) + νs,1 w(r)
}

dr . (61)
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Determination of the mass of the item

Determination of the mass of the fissile isotope

Traditional point model:

The multiplicities are explicit functions of the lumped parameters of the item,
which can be unfolded analytically

Out of these lumped parameters, only the spontaneous fission rate F appears
explicitly, which only gives the mass of the fertile isotope, e.g. the mass of
the 240Pu content, in a mixture of 239Pu and 240Pu.

The mass of the 239Pu, can only be determined if the isotopic ratio of the
two components is known, which often requires the use of methods of
destructive assay.

The space- (and energy-) dependent model:

In the integral equations for the multiplicities, all physical sample parameters
(mass of 239Pu and 240Pu) appear explicitly

The parameters cannot be unfolded analytically. Machine learning can be
used (artificial neural networks)

The formalism has to be extended for a mixture of two (or more) isotopes.
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Determination of the mass of the item

The structure of the ANN

Figure 4: A standard feed-forward ANN used in the unfolding calculations.
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Determination of the mass of the item

Input data for the training of the ANN

Figure 5: Neutron multiplicity rates for a Pu metal sphere in the mass range between about 1.8
g and 327.2 g of plutonium.
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Determination of the mass of the item

Results

Results taken from

Avdic S., Dykin V., Croft S. and Pázsit, I. “Item identification with a
space-dependent model of multiplicities and artificial neural networks.”
Nucl. Inst. Meth. A 1057, 168800 (2023)

Relative error (%) 239Pu mass Fission rate

maximum 0.081 0.0077

minimum -0.0378 -0.0088

mean 8.14e-05 3.02e-05

standard deviation 0.0068 0.0018

Table 1: Relative errors of the ANN outputs compared to the target values for the input
data without noise.
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Conclusions

Conclusions

There is a renewed interest and activity with neutrons fluctuations in low power
systems in various areas:

Start-up with a weak source

Extending the “point model” of multiplicity counting to space-angle-energy
dependent cases (on-going)

using continuous signals of fission chambers for safeguards and reactivity
determination

Stochastic modelling of the detection of scintillation detectors with Geant4

etc...
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