Lecture

In vivo molecular neuroreceptor imaging

Matthias Bauwens - Radiochemist Beeldvorming (NUTRIM) - MUMC

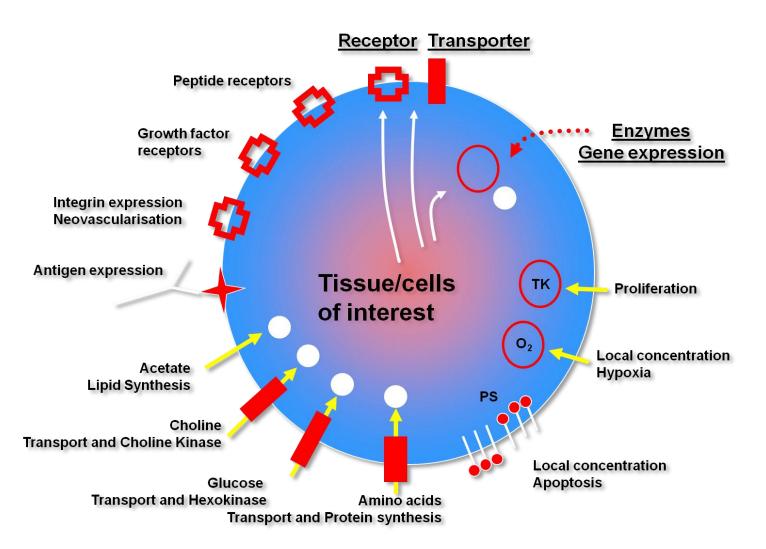
Outline of the presentation:

- 1) Introduction
- Neuro-imaging: why
- Targets: receptors/fysiological
- The best of nuclear medicine
- The worst of nuclear medicine
- 2) Which isotope?
- Karlsruhe chart
- Radiopharmaceutical = pharmaceutical
- 3) Some examples
- ¹⁸F-FDG
- Alzheimer: amyloid / Tau
- Epilepsy
- Other tracers
- Radiomics

Why neuro-imaging?

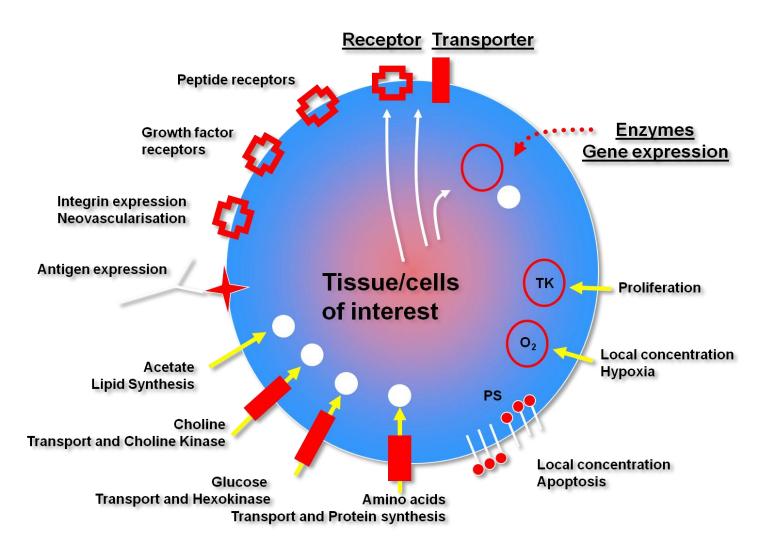
- Fundamental research: to learn how the brain works
- Diagnosing neurological diseases non-invasively (*)
- Prognosing neurological diseases
- Follow-up of neurological diseases (during therapy)
- Guidance for treatment of ... (DBS)

*Neurological diseases: Alzheimer, Parkinson, Epilepsy, Brain tumours, ...


Tracer concept

- Tracer: compound mimicking naturally occurring compounds
- (very) low concentration:
- Do not disturb physiological concentrations
- No pharmaceutical effect
- Generally: µmol nmol tracer (tumor, infection, infarct, ...)
- Target with low expression: nmol pmol tracer

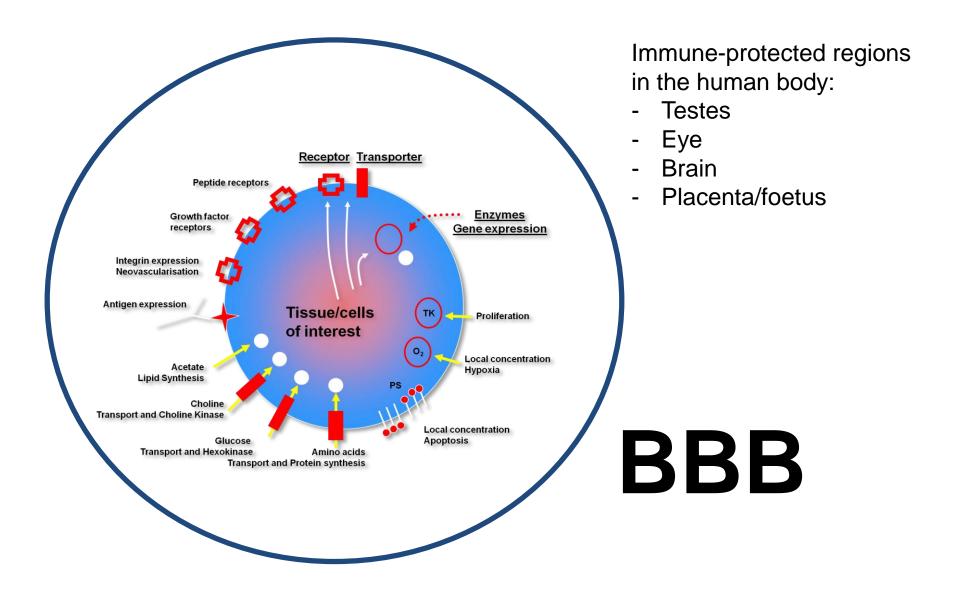
(alpha7 receptor: femtomol per cm³)


- Sufficient amount of radioactivity (or luminescence)
- Enough activity to get a signal
- More activity = better spatial and temporal resolution
- ALARA

Targets: <u>receptors</u> / physiological

Matrix proteins, vasculature-bound targets, immune cells, ...

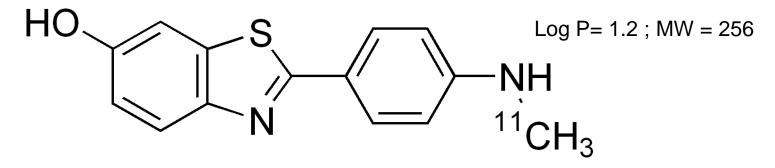
Targets: receptors / physiological


pH, perfusion, blood flow, vasculature (leaking), density, water and/or lipid content, ...

The best of nuclear medicine

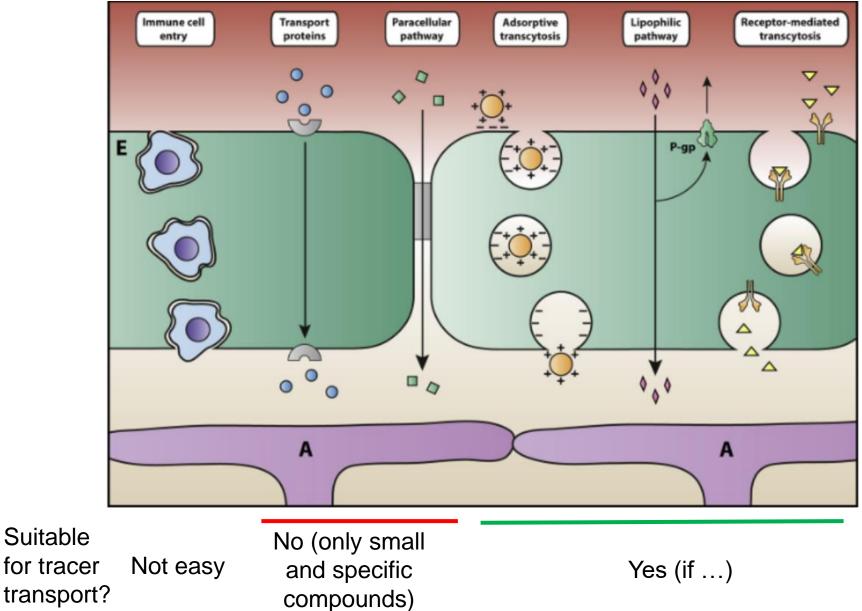
Imaging Method	Spatial resolution	Temporal resolution	Sensitivity
Ultrasound	50 µm	< 100 ms	10 ⁻³ mol
СТ	50 µm	< 100 ms	10 ⁻³ mol
MRI	100 µm	< 50 ms	10 ⁻⁵ mol
fMRI	3-4 mm	< 2 s	10 ⁻⁵ mol
MRS	1-10 mm	< 10 s	10 ⁻⁵ mol
Bioluminescence, Fluorescence	1-3 mm (depth dependent)	< 5 s	10 ⁻⁸ mol
Nuclear (PET or SPECT)	2 mm	< 5 s	10 ⁻⁹ -10 ⁻¹² mol

Take care: All numbers are strongly dependent on equipment/technique!

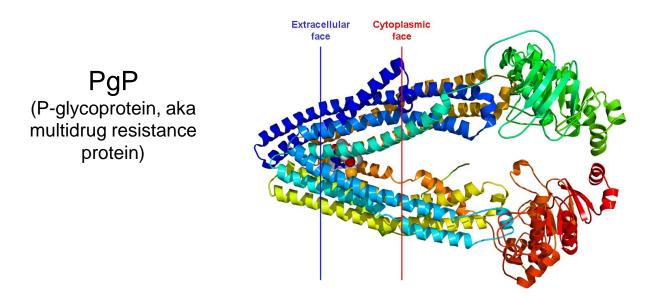

The worst of nuclear medicine

The worst of nuclear medicine

Lipinski's rule of 5:


- No more than 5 hydrogen bond donors (the total number of nitrogenhydrogen and oxygen-hydrogen bonds)
- No more than 10 hydrogen bond acceptors (all nitrogen or oxygen atoms)
- A molecular mass less than 500 daltons
- An octanol-water partition coefficient (log P) not greater than 5

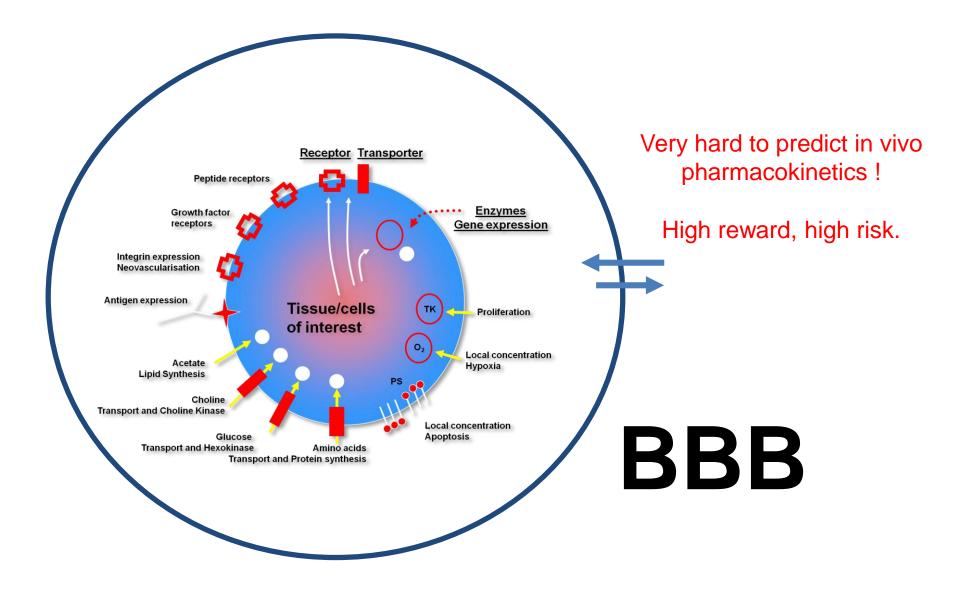
Biggest exception so far: entire antibody passing BBB


Example: Therapeutic bispecific antibodies cross the blood-brain barrier in nonhuman primates. Sci Transl Med. 2014 Nov 5;6(261):261ra154

Can everything pass the BBB?

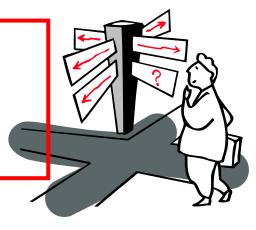
10

In, but not out ...

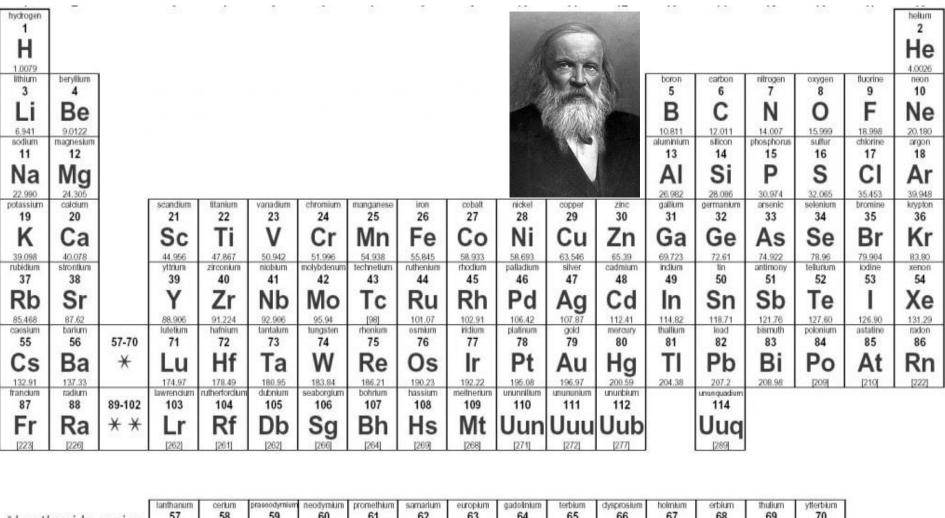


Pumps xenobiotics (drugs, toxins and tracers) back out to the blood

Avoid it by following a "rule of 4"

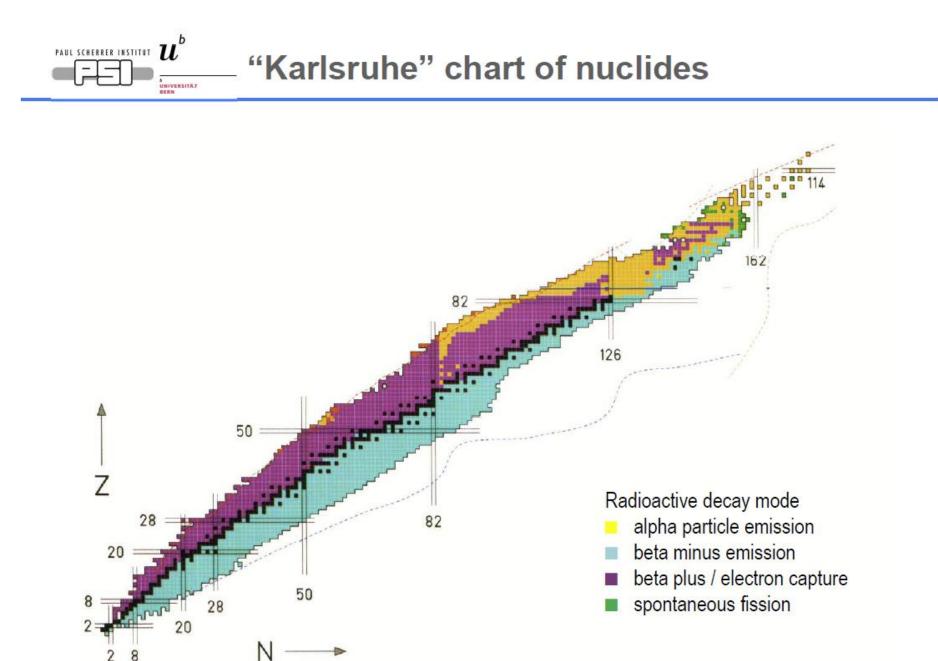

- MWt < 400 Da or > 800 Da
- with < 7 nitrogen plus oxygen atom HBAs
- basic pK_a of < 8

The worst of nuclear medicine



Outline of the presentation:

- 1) Introduction
- Neuro-imaging: why
- Targets: receptors/fysiological
- The best of nuclear medicine
- The worst of nuclear medicine
- 2) Which isotope?
- Karlsruhe chart
- Radiopharmaceutical = pharmaceutical
- 3) Some examples
- ¹⁸F-FDG
- Alzheimer: amyloid / Tau
- Epilepsy
- Other tracers
- Radiomics

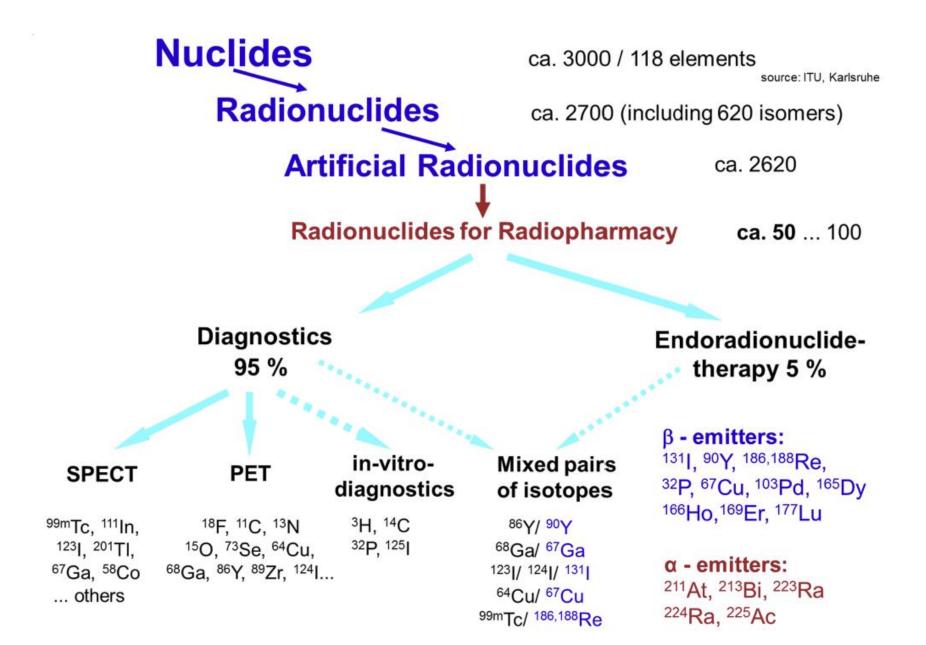

Table of Mendeljev

*	Lant	hanic	le ser	ies

**Actinide series

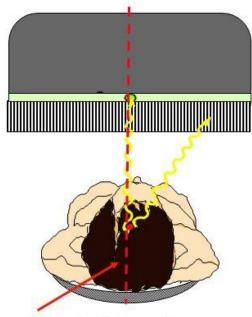
	lanthanum 57	cerium 58	praseodymium 59	neodymium 60	promethium 61	samarlum 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erblum 68	thulium 69	ytterbium 70
2	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
	138.91	140.12	140.91	144,24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167,26	168.93	173.04
	actinium 89	thorium 90	protactinium 91	uranium 92	neptunium 93	plutonium 94	americium 95	curium 96	berkelium 97	californium 98	einsteinium 99	fermium 100	mendelevium 101	nobellum 102
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
J	[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

Karlsruhe Chart



Karlsruhe Chart (zoomed in)

🖉 Janis NEA - Nuclear properties - Nubase 2003 - Basic properties


File Database Search Chart Help																						
BRANCHING	z N	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150	151	15:
EU, Beta+	98								Cf	Cf	Cf	Cf	Cf	Cf	Cf	Cf	Cf	Cf	Cf	Cf	Cf	C:
Beta-																						
Alpha IT	97							235	236	237	238	239	240	241	242	243	244	245	246	247	248	249
SF								Bk	Bk	Bk	Bk	Bk	Bk	Bk	Bk	Bk	Bk	Bk	Bk	Bk	Bk	BI
							233	234	235	236	237	238	239	240	241	242	243	244	245	246	247	248
n n	96						Cm	Cm	Cm	Cm	Cm	Cm	Cm	Cm	Cm	Cm	Cm	Cm	Cm	Cm	Cm	Cı
■ ✓ Stable																						
Unknown	95					231	232	233	234	235	236	237	238	239	240	241	242	243	244	245	246	247
🔲 🗹 No data avail ⊻						Am	Am	Am	Am	Am	Am	Am	Am	Am	Am	Am	Am	Am	Am	Am	Am	Αı
No parity filter 🗸 🗸				228	229	230	231	232	233	234	235	236	237	238	239	240	241	242	243	244	245	246
	94			Pu	Pu	Pu	Pu	Pu	Pu	Pu	Pu	Pu	Pu	Pu	Pu	Pu	Pu	Pu	Pu	Pu	Pu	P1
Nuclide / Compound																						
U223	93	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240	241	242	243	244	
U224		Np	Np	Np	Np	Np	Np	Np	Np	Np	Np	Np	Np	Np	Np	Np	Np	Np	Np	Np	Np	
U225		224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240	241	242		
U226	92	U 224	U 225	U	U	U	229 U	U 230	U	U	U	U 234	U 235	U 230	U 237	U 230	239 U	U 240	U 241	Ŭ		
U228		, v	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	_ ĭ_							<u> </u>		
U229	91	223	224	225	226	227	228	229	230	231	232	233	23									
U230	81	Pa	Pa	Pa	Pa	Pa	Pa	Pa	Pa	Pa	Pa	Pa	P									
U231		000	000	224	225	0.00	0.07	0.00	220	220	224	000			23	5 🗭	9	143				
U232	90	222 Th	223 Th	Th	225 Th	226 Th	227 Th	228 Th	229 Th	230 Th	231 Th	232 Th	23: T		200							
U233 📃		Th	Th	Th	Th	TU	Th	Th	Th	Th	TU	TU	T		~							
U234		221	222	223	224	225	226	227	228	229	230	231	23:		- 92	2 🔪	_	143				
🔵 U234m	89	Ac	Ac	Ac	Ac	Ac	Ac	Ac	Ac	Ac	Ac	Ac	A									
📃 🔵 U235																	_					
Databases	88	220	221	222	223	224	225	226	227	228	229	230	23	~ 26	m 1/2) L	7	04 MV	7/2-			
🖻 🖓 NEA 🗛		Ra	Ra	Ra	Ra	Ra	Ra	Ra	Ra	Ra	Ra	Ra	R	*20	ш 1/2	. '	· '	04 My	1/2			
🔄 🗁 Nuclear properties		219	220	221	222	223	224	225	226	227	228	229	23	I eva	=0.076	5	^=4	0920.5	(1 8	<u>\</u>		
	87	Fr	Fr	Fr	Fr	Fr	Fr	Fr	Fr	Fr	Fr	Fr	F	D CA-	-0.070	5	4-4	0520.3	(1.0	'		
🖃 🗁 Nubase 2003														ТТ	=100%		Abndn	c=0.72	00% (51)		
Basic properties	86	218	219	220	221	222	223	224	225	226	227	228			1000			0 0.72		<u>, </u>		
🖮 🛅 Radioactive data 🛛 🗧		Rn	Rn	Rn	Rn	Rn	Rn	Rn	Rn	Rn	Rn	Rn										
🗄 💼 Incident neutron data		217	218	219	220	221	222	223														
표 🛅 Incident gamma data	85	At	At	At	At	At	At	At														
🗄 🛅 Incident proton data									J													
🗄 🛅 Incident deuteron data 🦷	84	216	217	218	219	220																
🗄 🖳 🛅 Incident triton data		Po	Ро	Po	Po	Po																~
🗄 🦳 Incident He3 data) <																1111				>
🗄 🗁 Incident alpha data	43	V -																				
Uranium/II Nº 143	7. 0	12 A	· 235														43 nix	cels				

43 pixels

SPECT

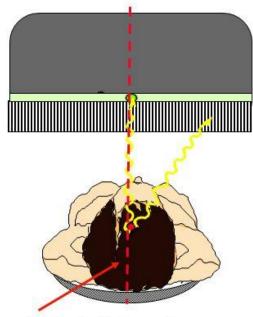
Only photons emitted perpendicularly to the detector plane can pass through collimator

Collimator hole determines the line of photon emission

Collimated detector

Limit: 50 – 300 keV gamma or X-rays

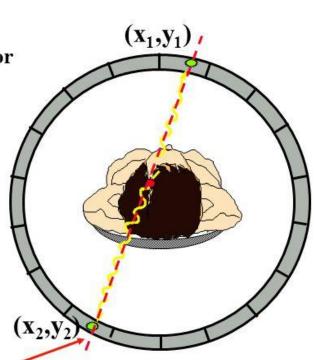
PET


Coordinates of a two simultaneously detected photons determine the line of photon emission (line of response – LOR)

Electronic collimation

Limit: < 5 MeV positrons (gamma-energy is fixed)

SPECT


Only photons emitted perpendicularly to the detector plane can pass through collimator

Collimator hole determines the line of photon emission

Collimated detector

Static image: limited temporal resolution (>10min)

PET

Coordinates of a two simultaneously detected photons determine the line of photon emission (line of response – LOR)

Electronic collimation

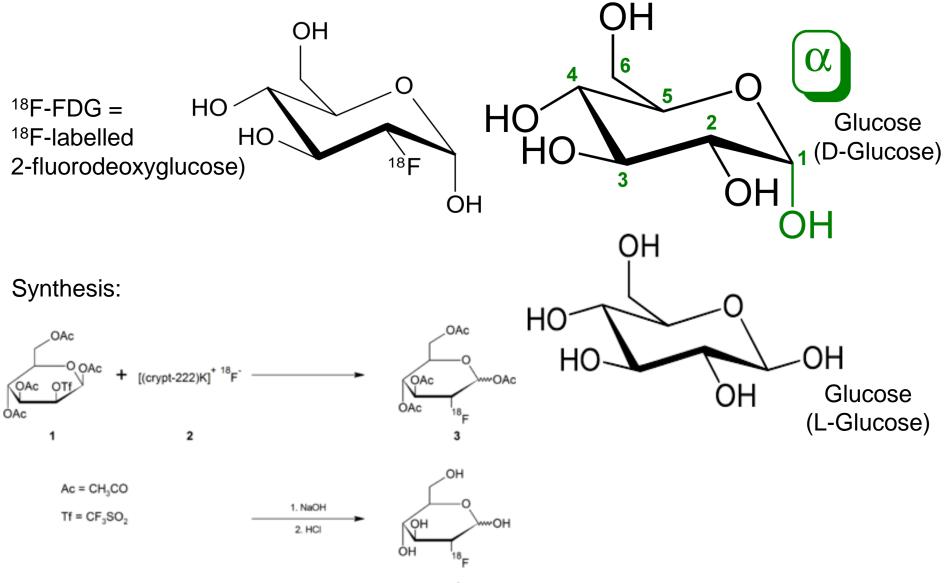
Dynamic image: temporal resolution as of 0,1 min

Best isotopes for PET

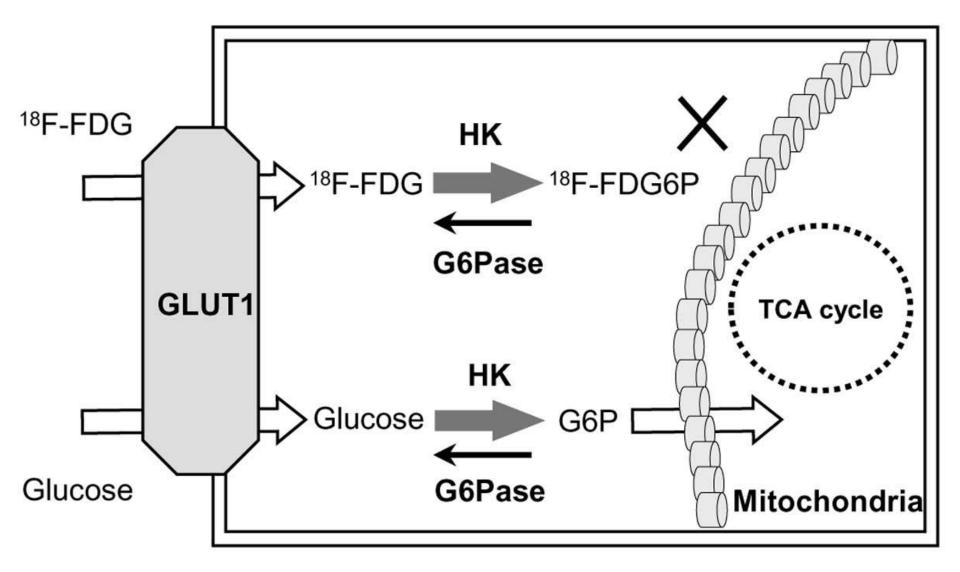
lsotope	Half-life	Positron range in water	Chemistry	
¹¹ C	20 min	1.1 mm	Covalent bond	
¹³ N	10 min	1.5 mm	Covalent bond	
¹⁵ O	2 min	2.5 mm	Covalent bond	
¹⁸ F	110 min	0.6 mm	Covalent bond	
⁶⁸ Ga	68 min	2.9 mm	Chelation	
⁸⁹ Zr	3.27 days	1.1 mm	Chelation	
¹²⁴	4.2 days	1.1 mm	Covalent bond	

Why is half-life important? Why is positron range important? Does chemistry matter? Diagnosis with a (radio)pharmaceutical = same legislation as for treatment with a pharmaceutical

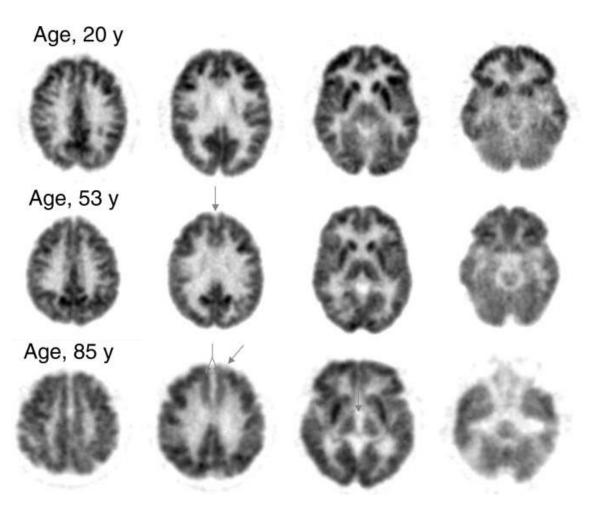
Molecular Imaging (with tracers)


- PET, SPECT, BLI, (photoaccoustic), (MRS)
- Licence for using tracers and equipment
- Manufacturing licence for syntheses
- Registration of tracer required before market application (>100 M euro)
- Yearly market value of <15 M euro per tracer

Morphological imaging (physiology)

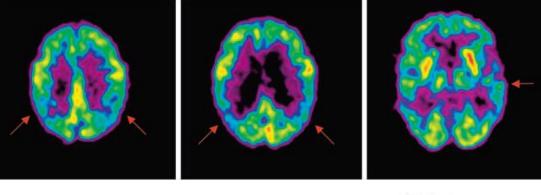

- CT, (f)MRI, US, (photoaccoustic), (MRS)
- Licence for using equipment
- No synthesis required
- No tracer to register

Outline of the presentation:

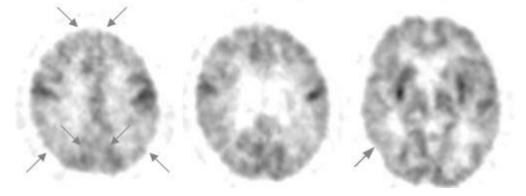

- 1) Introduction
- Neuro-imaging: why
- Targets: receptors/fysiological
- The best of nuclear medicine
- The worst of nuclear medicine
- 2) Which isotope?
- Karlsruhe chart
- Radiopharmaceutical = pharmaceutical
- 3) Some examples
- ¹⁸F-FDG
- Alzheimer: amyloid / Tau
- Epilepsy
- Other tracers
- Radiomics

4

Be careful with interpretation: you are essentially visualising GLUT1, not mitochondrial activity (*although this is off course correlated*)

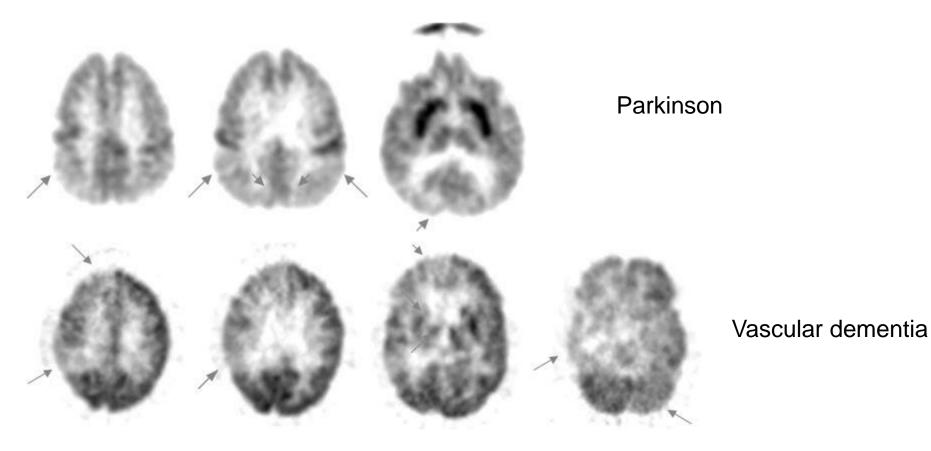

Normal adult pattern of cerebral glucose metabolism measured with 18F-FDG.

Images are shown from the most superior (far left column) to most inferior (far right column) planes of the brain. Images are cross-sectional and are displayed with the anterior brain at the top of each image and the left side of the brain on the right of each image.

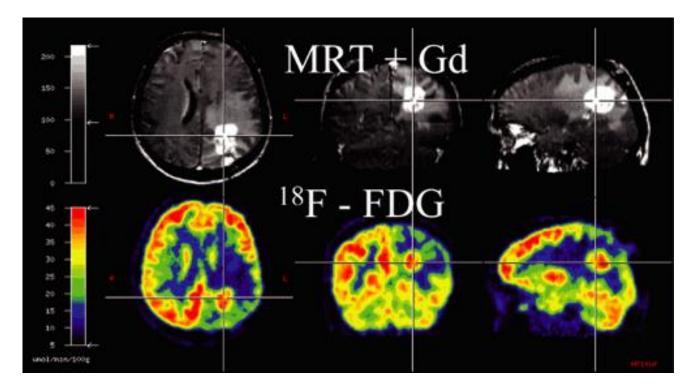

Normal aging is associated with some increased **generalized cortical atrophy**, as evidenced by moderate widening (arrow) of the interthalamic distances in the 85-y-old patient (middle right).

Additional arrows highlight the progression of **mild metabolic decline**, also attributable to normal aging, in the medial prefrontal cortex bilaterally (middle left, ages 53 and 85 y) and in the left anterior prefrontal cortex (middle left, age 85 y).

Otherwise, in healthy adults, the pattern of regional cerebral metabolism changes little throughout adulthood.

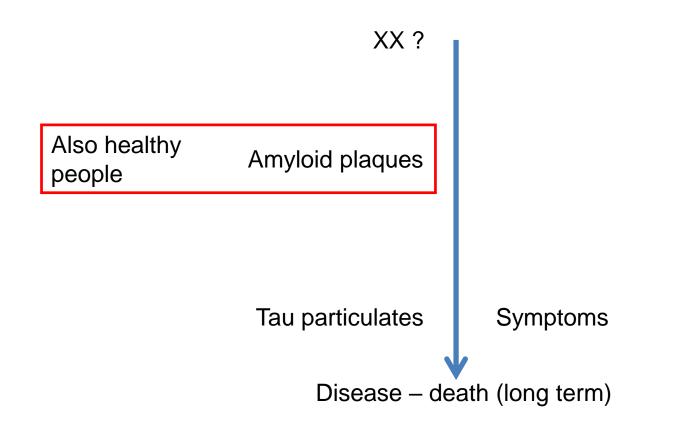


Early AD

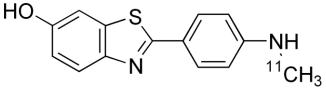

Lewy bodies

THE JOURNAL OF NUCLEAR MEDICINE • Vol. 45 • No. 4 • April 2004

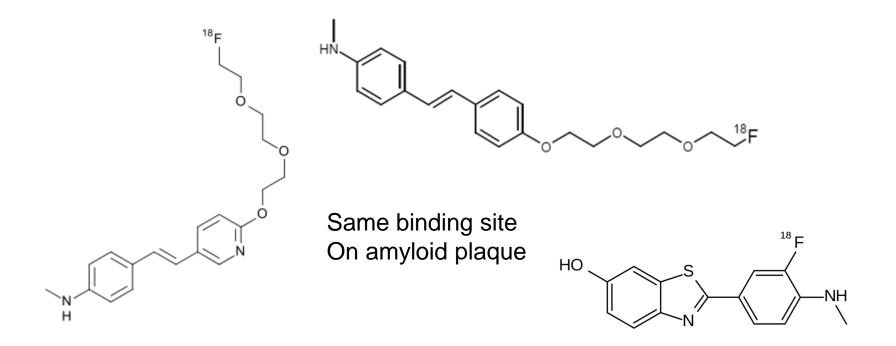
Hypometabolism Non-invasive confirmation of "disease", but not disease-specific


THE JOURNAL OF NUCLEAR MEDICINE • Vol. 45 • No. 4 • April 2004

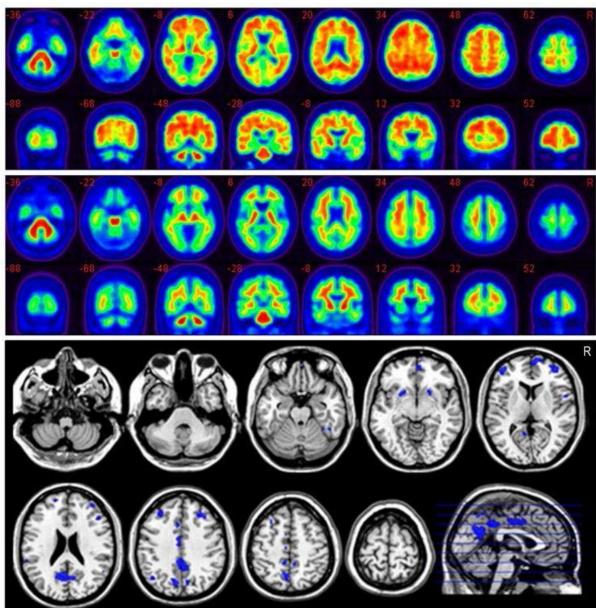
Typical pattern of a glioblastoma in ¹⁸F-FDG-PET. Uptake is in the range of the normal unaffected cortex colocalized with the contrast enhancement in MRI. The area of high ¹⁸F-FDG in the tumor is surrounded by decreased ¹⁸F-FDG in the cortex.


Radiology Key, Kracht L. et al.

Some examples (2): Alzheimer: Amyloid / Tau


Therapy? (simply dissolving amyloid plaques seems to worsen prognosis)

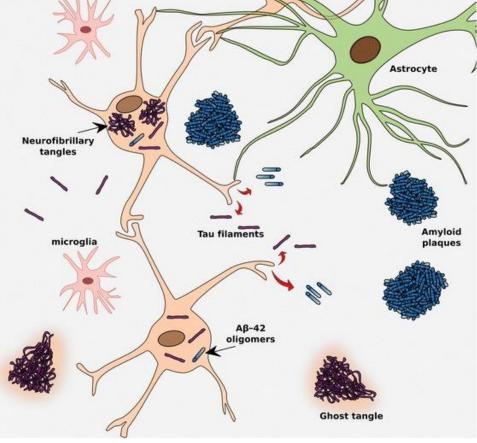
Lack of therapy → diagnosis less usefull (reimbursement)



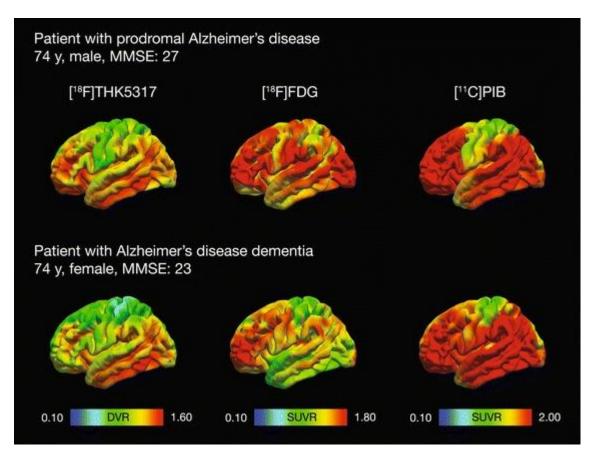
¹¹C-PIB: works, needs on-site cyclotron. Not commercially viable.

Florbetapir (Eli Lilly), florbetaben (Bayer, Avid, Piramal), and flutemetamol (GE)

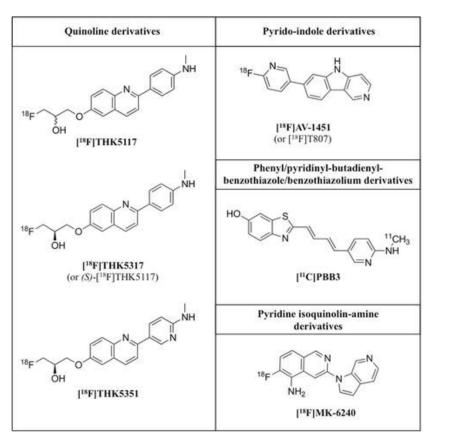
Some examples (2): Alzheimer: Amyloid / Tau


18F-Flutemetamol

Presumed AD patient


Presumed healthy volunteer

Areas of interest

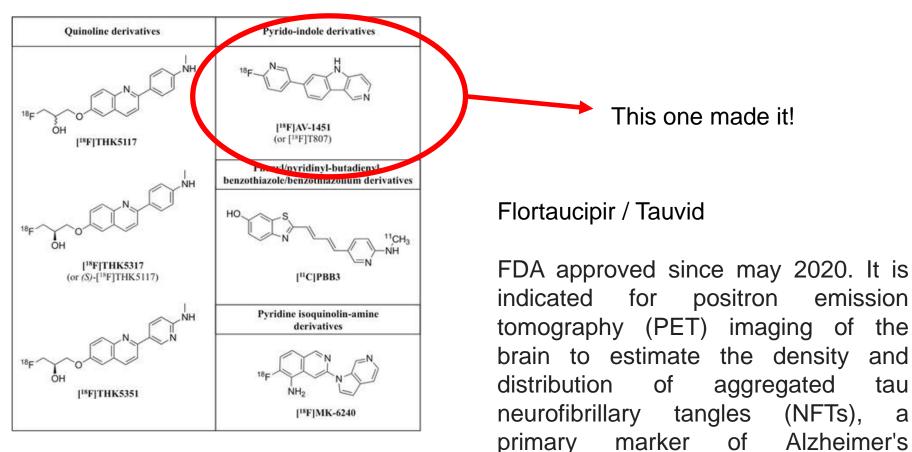

Tau = microtubuli-associated protein Abnormal aggregation in "tauopathies", including AD 6 different proteins Intracellular aggregation (mostly)

Some examples (2): Alzheimer: Amyloid / Tau

Some examples (2): Alzheimer: Amyloid / Tau

Binding sites PBB3 THK5117 THK5351 AV-1451 PHFs tau [18, 31, 37]; NFTs [23, 37] (both intracellular and extracellular [**37**], mature tangles [31] and NFTs [28] (ghost tangles PHFs tau [125]; ghost tangles and non-ghost tangles NFTs[15, 24, [<u>31</u>, <u>33</u>, <u>37</u>]); [33]); 125](both neuritic plaques neuropil threads [28, 33]; and primitive intracellular and neuritic plaques [28, 33] extracellular and NFTs [26]; plaques [33] (to a and primitive plaques ghost tangles thread-like limited extent); [33]; [125]); structures in the dense core dense core amyloid white matter amyloid plaques neuritic plaques plaques and diffuse [125]; [35]; [33]; tufted amyloid-beta deposits melaninargyrophilic [33]; grains [125]; astrocytes [36] containing Pick bodies [28]; argyrophilic structures [31, astrocytic plaques [28]; threads [125]; 371: tau inclusions in PiD, PSP globose tangles lipofuscinand CBD [28] [125] containing structures [31]; mineralized structures [31]; 3R + 4R tau deposits (much

Plethora of options and targets:


- Fundamental science: yes
- Clinical applications: not yet

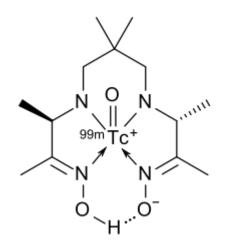
Mol Neurodegener. 2017; 12: 19.

more than 3R or 4R [31]);

MAO-A [23]

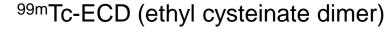
Update on Alzheimer: Amyloid / Tau

disease.

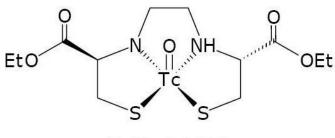

Alzheimer?

How did they prove the link to

36

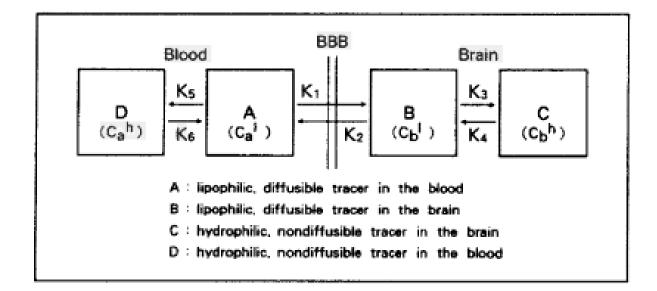

tau

a

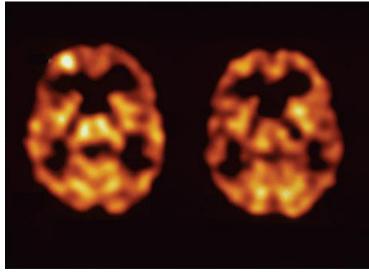


^{99m}Tc-HMPAO (exametazime, ceretec)

- → 3 or 4-compartment analysis of brain tissue
- → Trapping of hydrophilic form to glutathion (intracellular)

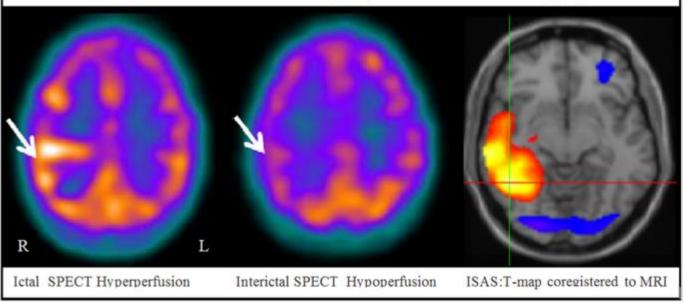


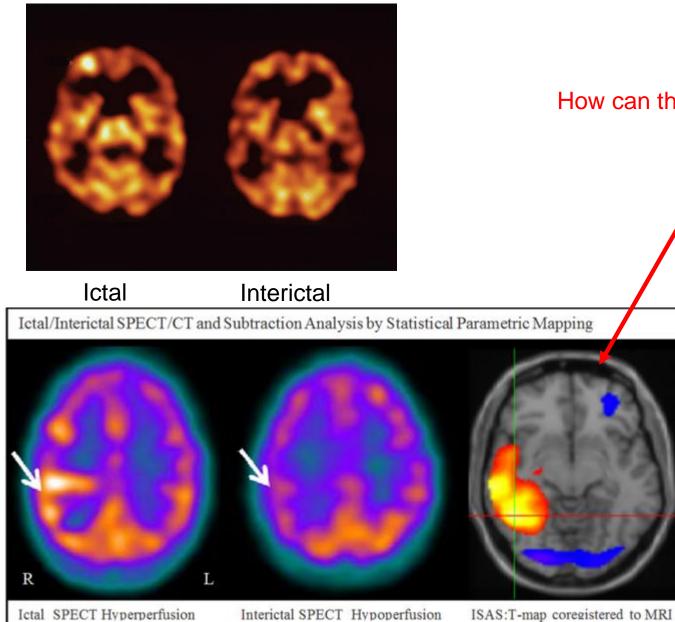
- → 3 or 4-compartment analysis of brain tissue
- → Trapping of metabolised polar form (intracellular)



Tc-99m-L,L-ECD

4-compartmental analysis


- K4 and K6 assumed to be zero (negligible)
- Known blood values + imaging data → cerebral blood flow

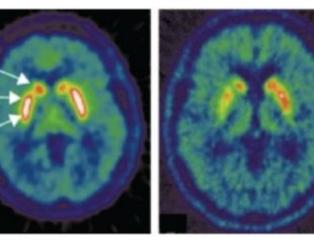


Interictal

Ictal/Interictal SPECT/CT and Subtraction Analysis by Statistical Parametric Mapping

- Manual substraction
- Parametric mapping

How can this image be improved?


- Manual substraction
- Parametric mapping

Some examples (4): Parkinson

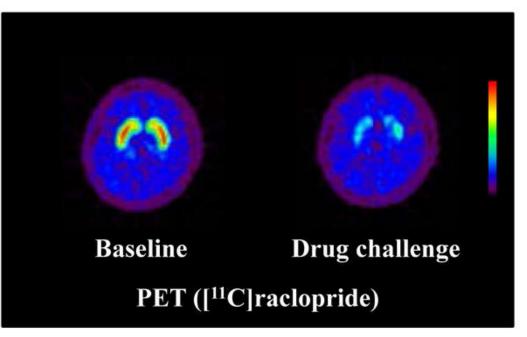
¹⁸F-DOPA

Caudal putamen

Healthy subject

Patient with idiopatic PD

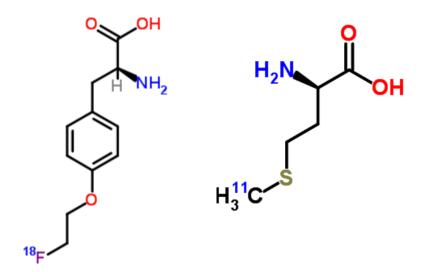
Uptake correlated to aromatic amino acid decarboxylase, reflecting dopaminergic functionality. (AADC converts DOPA to Dopamine)


Striatal ¹⁸F-DOPA uptake correlates to motor function and inversely correlates with rigidity, but does not correlate with tremor or depression.

Note the assymetry in PD.

- Serotonergic system: ¹¹C-DASB and ¹¹C-McN5652 striatal serotonergic denervation is relatively moderate compared to striatal DA denervation
- ¹¹C-diprenorphine (visualising μ, κ and δ opioid sites)
 Related to PA, but no clinical applications

Some examples (4): Parkinson

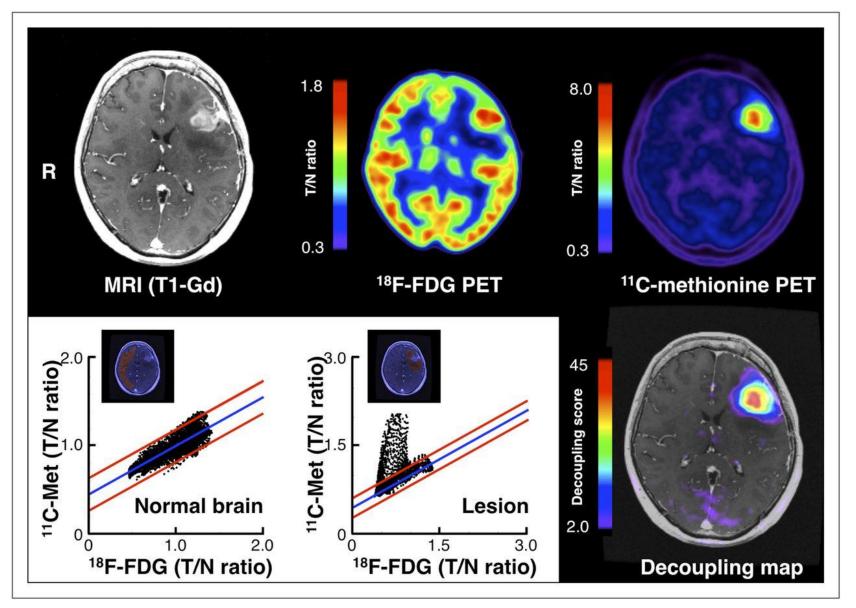

¹¹C-Raclopride

¹¹C-Raclopride:

- Diagnosis of huntington disease
- Personality disorders (schizophrenia, ...)

Some examples (6): 18F-FET / 11C-Methionine

Radiolabelled amino acids


Correlate to transport system expression, do not necessarily reflect intracellular metabolism.

Both tracers: uptake via LAT1 transport system.

LAT1 = L-type Amino acid Transport system

LAT1 correlates strongly with glioma grading

Some examples (6): 18F-FET / 11C-Methionine

J Nucl Med November 1, 2012 vol. 53 no. 11 1701-1708

Outline of the presentation:

4) What's available in-house?

- SPECT/CT (clinical and preclinical)
- PET/CT (clinical and preclinical)
- PET/MR (clinical)
- (MR, CT, US, ...)
- Proton therapy
- Radiopharmacy (clinical and preclinical)

SPECT/CT

- Spatial resolution: 1.5 cm
- Temporal resolution: >20 min
- 4D imaging (total-body)
- no quantitative imaging
- Multi-isotope (new models)

PET/CT

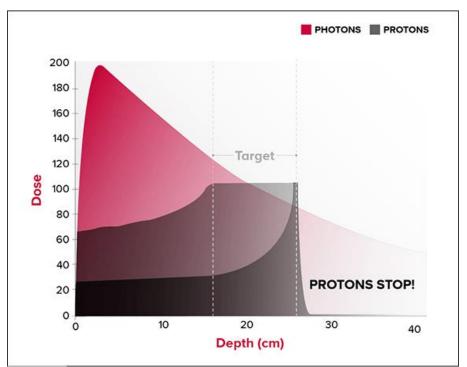
- ✓ Spatial resolution: 0.8 cm
- ✓ Temporal resolution: < 10 sec
- 4D imaging (total-body)
- Quantitative imaging
- ✓ No multi-isotope

PET/MRI

- ✓ Spatial resolution: 0.4 cm
- ✓ Temporal resolution: < 10 sec
- 4D imaging (total-body)
- Quantitative imaging
- No multi-isotope

PET/CT

- ✓ Spatial resolution: 0.8 cm
- ✓ Temporal resolution: < 10 sec
- 4D imaging (total-body)
- Quantitative imaging
- ✓ No multi-isotope


microPET/CT: soon available (again)?

- ✓ Spatial resolution: 0.1 cm
- / Temporal resolution: < 5 sec</p>
- 4D imaging (total-body)
- Quantitative imaging
- No multi-isotope

Proton therapy in Maastricht

Photons: exponentially less dose Protons: Bragg peak

