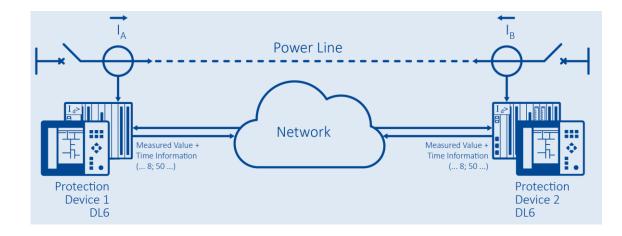


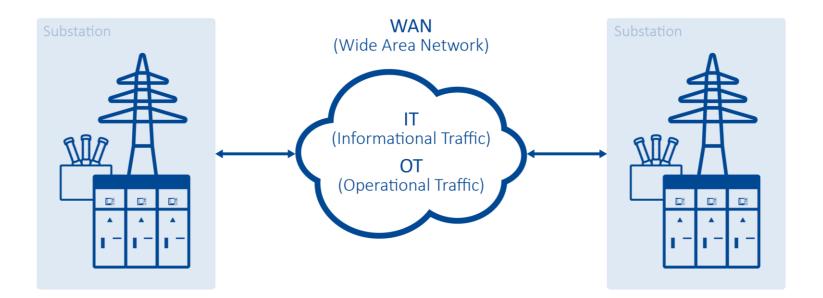
Migration of the Protection Data Interface from SDH to MPLS Networks

Andreas Aichhorn


© Sprecher Automation 2020

Motivation and Introduction

• Protection Data Interface


 \rightarrow Line Current Differential Protection

Motivation and Introduction

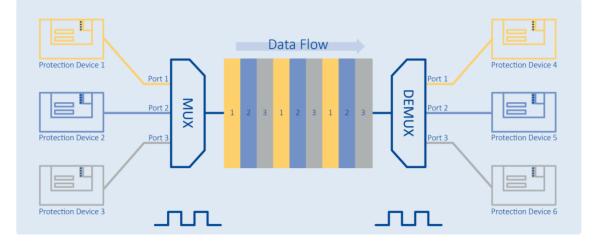
Inter-Substation Communication

Motivation and Introduction

• Differentiation of data by application

- Informational Traffic (IT) / Enterprise
 - E-Mail, Communication to data server, Softwareupdates...
- Operational Traffic (OT)
 - Communication for operation, monitoring and protection application
 - \rightarrow Telecontrol and Teleprotection!

• Communication network type for IT/OT


- Enterprise (IT):
 - Ethernet-based
- Operational (OT):
 - Telecontrol: Ethernet-based
 - Teleprotection: PDH, SDH / Ethernet-based
 - \rightarrow Protection data interface of line current differential
 - \rightarrow Signal comparison

IEEE C37.243-2015: 6.1.1 "... Presently, the use of Ethernet communications has not been widely implemented for line current differential relaying, but is expected in future designs ..."

Transmission mechanism

- Time Division Multiplexing (TDM) \rightarrow SDH
 - Fixed assigned time slot for each device
 - e.g. PDH, SDH

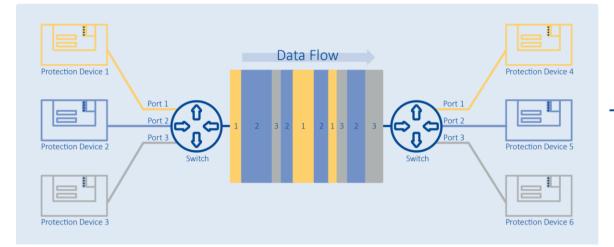
\rightarrow Inefficient method

SDH → Ethernet-based

- SDH initially designed for voice transmission
- Subsequently used for general WAN communication
 - → Increase in required bandwidth
- Inefficient use of bandwidth due to fixed assigned timeslots
 - → Development of packet-switched networks (e.g. Ethernet) was pushed
- Expansion of the SDH networks declined from around 2000
- Investment in Ethernet-based solutions increased from around 2005
- SDH networks reached "End-of-Life"
 - ➔ Development of services to emulate SDH

Ciena Corporation 06.2013:

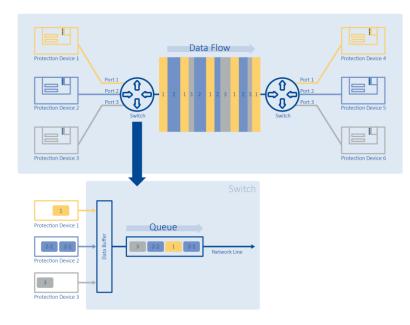
Director, Social Media

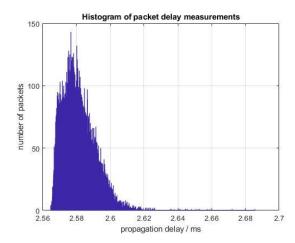

SONET/SDH is dead – really this time

June 19, 2013

Transmission mechanism

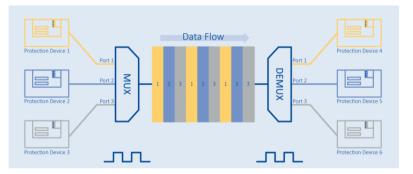
- Packet Switched Network (PSN) → MPLS
 - Data is sent as needed
 - e.g. MPLS, Carrier Ethernet




→ Efficient bandwidth utilization

Transmission mechanism

- Packet Switched Network (PSN) → MPLS
 - Reason for packet delay variation/Jitter



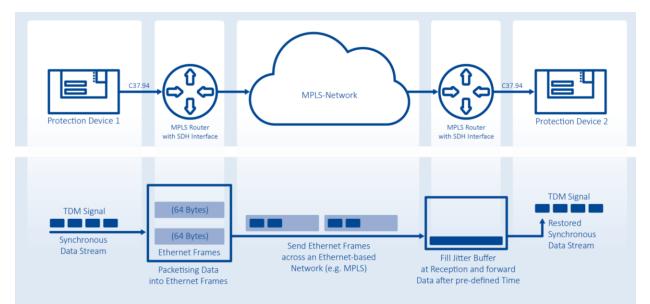
Measurements in an IP/MPLS-Network: 14 Switches and 300 km FO cable

Transmission mechanism

- Essential difference for teleprotection
 - Deterministic propagation delay?
 - Synchronous data transmission?

TDM (e.g. SDH)

PSN (e.g. Ethernet)


• Migration from SDH to MPLS

- Use of emulated services for TDM over MPLS
 - Pseudowire connection (CESoPSN, SAToP, ...)
- Direct use of MPLS without additional services
 - Adapt end devices to the transmission properties of MPLS

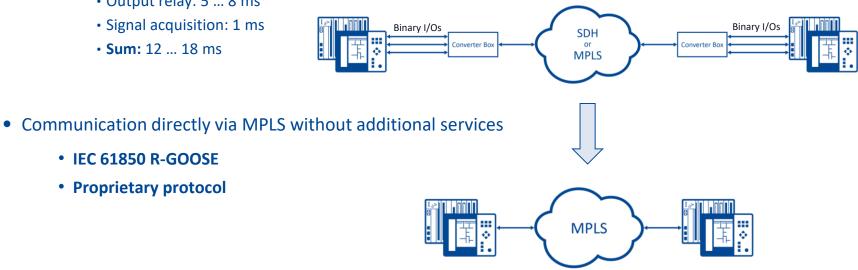
Use of emulated services for TDM over MPLS

• Pseudowire connection (CESoPSN, SAToP, ...)

- → Increased propagation delay due to packetization and jitter buffer
- → Increased reserved bandwidth with high priority
- → Limited payload n x 64 kbps
- → Network device needs to support this service

• Direct use of MPLS without additional services

• Adapt end devices to the transmission properties of MPLS


→ No predetermined limit of data to be transferred

- ightarrow Low propagation delay
 - → Especially for Multi-Ended system
- → Established protocols from Ethenet/IP available

Possibilities for signal comparison

- Conventional wiring using an I/O Box
 - Composition of propagation time Typical times
 - Output relay: 5 ... 8 ms
 - Signal acquisition: 1 ms
 - Sum: 12 ... 18 ms

	Recommendation acc. IEC 61850-90-12 / Table 12		
Characteristic properties of the network	Analog comparison (Current differential)	Command / Transfer tripping	
Propagation delay	< 3 or 10 ms	< 10 ms	
Jitter	< 100 µs	Not required	
Asymmetry	< 200 µs	Not critical	
Recovery Delay	< 50 ms	< 50 ms	

 Specific requirement is manufacturer dependent!
not generally definable

 The resulting accuracy should not depend on the properties of the network!

Current technologies for WANs

• MPLS – Multi Protocol Label Switching

IP/MPLS

ightarrow Label contains route description through the network

- IP/MPLS
- MPLS-TE
- MPLS-TP
- Carrier-Ethernet
 - ightarrow Extension of the Ethernet network packet

• Characteristics of WAN technologies

	IP/MPLS	MPLS-TE	MPLS-TP	Carrier Ethernet
General	Initial version of MPLS	Extension of IP/MPLS	"Successor" of SDH	Extension of Ethernet
Routing mechanism	Comparable to IP- networks; Optimized propagation delay	Optimized channel utilization	Static routing	Optimized propagation delay
Symmetry property	Asymmetric paths may occur	Strict routes are possible	Symmetry properties configurable	Asymmetric paths may occur

• Change of OT networks necessary

- Migration from SDH \rightarrow MPLS (or Ethernet)
 - Short- or Medium-term goal
 - Possible to use emulated connections
 - Long-term goal
 - Adapt the concept of the end devices to the properties of the communication
 - → Eficient and advantageous method

- Advantages of direct communication via MPLS
 - No predetermined amount of data \rightarrow more possibilities
 - Low propagation delay achievable
 - Use of established Ethernet/IP protocols
- Institutions (IEC, CIGRE, ...) are working on specifications/standards
- Manufacturers already have products or are currently working on solutions

Thank you for your attentiontion!

Dr. Andreas Aichhorn

Product Manager andreas.aichhorn@sprecher-automation.com

- IEC 61850-90-1
- IEC 61850-90-12
- CIGRE B5.71 / Chapter 4

• **ELECTRICAL-ENGINEERING.ACADEMY:** Line Current Differential Protection: Migration Of The Protection Interface From SDH To MPLS Networks

<u>https://www.electrical-engineering.academy/posts/line-current-differential-protection-migration-of-the-protection-interface-from-sdh-to-mpls-networks</u>