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Washington University in St. Louis
Part 1: Wednesday November 9, 14:00-17:00 
Part 2: Thursday November 10, 9:30-12:30 

How to sum a series (1) if it converges and (2) if it diverges 
It almost never happens that one can find the exact analytical solution to a research problem in 
physics. Usually, the best one can do is to obtain an accurate approximation to the exact 
solution. The standard approach is to use perturbation theory, but perturbation series almost 
always diverge, and even if they converge, they often do so painfully slowly. Therefore, it is 
important to know how to extract information from a slowly convergent or a divergent series. In 
these lectures we introduce methods for accelerating the convergence of a slowly converging 
series (Shanks transformation, Richardson extrapolation) and for making sense of and summing a 
divergent series (Borel and Padé summation). 
 
 

      University of Eastern Finland
Thursday November 10, 14:00-16:00 

Geometric Phase and Complementarity 
We begin by analyzing the intensity and polarization-state modulations in vectorial Young’s dual-
pinhole interference and the consequent emergence of the Pancharatnam-Berry geometric 
phase and the vector wave-particle complementarity. We then examine the intrinsic properties 
of three-dimensional (3D) light fields whose polarization state does not admit the conventional 
beam-field representation. Finally, we explore polychromatic surface-plasmon polariton (SPP) 
fields, establish methods of tailoring their coherence and polarization features, and illustrate 
planar SPP fields that exhibit orbital and spin angular momentum. 
 



    VU / ARCNL
Friday November 11, 9:30-12:30 

Imaging with and without lenses 
ABSTRACT FOLLOWING SOON 
 
 
 
 
 
 
 
 
 
 

               Utrecht University / TU Delft 
Friday November 11, 14:00-16:00 

New paradigm for solving inverse problems: Combining physics knowledge 
with AI by automatic differentiation 
Conventionally, solving inverse problems requires iterative optimization based on a model that 
simulates the processes of measurement, and building the model requires the knowledge of 
physics to describe the simulation by mathematics for implementation. Such a procedure often 
faces two challenges: finding the proper mathematical description and performing the simulation 
both efficiently and accurately. In the contrast, artificial intelligence (AI), e.g., (deep learning) 
neural networks, allows building models to approximate the processes of measurement using the 
knowledge learned from the data.  

It is thus of great interest for researchers in various fields to design hybrid models that can benefit 
from both the physics knowledge accumulated in human history and the flexibility AI offers. In 
ideal cases, one prefers to describe the measurement processes by physics knowledge, while 
replacing some key parts of the model with AI. However, integrating AI into conventional models 
remains a challenge as the optimization relies on computing the gradients of the variables in the 
models using analytical formulas derived by hand. On one hand, as the model complexity increases, 
the tedious hand derivation is increasingly impossible. On the other hand, because AI can only be 
treated as black boxes, in which the derivative of the input with respect to the output is not 
explicitly known, the chain rule breaks for models involving AI parts.   

The remedy to this issue is to build the model, in the conventional sense, on a mainstream AI 
platform, like TensorFlow or PyTorch, that provides automatic differentiation (AD) functionality. 
By designing the model as a concatenation of a series of sub-models and guaranteeing that these 



sub-models, based on either physics knowledge or AI, are differentiable, one can simulate 
arbitrarily complex measurement processes and always compute the gradients of the variables by 
AD.  This approach thus provides maximum freedom for solving the inverse problems as one only 
needs to focus on the simulation model and let AD handle the optimization.  

In this workshop, we will introduce applying AD to solving a number of inverse problems on the 
TensorFlow platform. We will illustrate examples from simple cases of solving systems of equations 
and curve fitting by regression, to more complicated cases of image processing and phase retrieval. 
We expect the participants to be experienced in programming, preferably in Python, and to have 
a basic understanding of the math for optimization. 


