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Abstract
The emerging market of Urban Air Mobility (UAM) introduces highly uncertain mission parameters due to the
non-conformal aspects of the expected operation of Electrical Vertical Take-off and Landing (eVTOL) vehicles,
Unmanned Traffic Management (UTM) and vertiport logistics. The present research proposes a methodology
to quantify this operational uncertainty, while integrating it into the design of an eVTOL aircraft by means of a
Reliability-based Design and Optimization (RBDO) approach. The baseline configuration is a long-range eVTOL
named Wigeon, which was deterministically designed and optimized. The proposed stochastic-based MADO
approach employs a Monte Carlo Simulation to estimate the energy requirements for a diverse range of mission
parameters. The results indicate that the reliability driven method performs better at mitigating risk compared to
the traditional method of using safety factors to create design margin. However, the RBDO method overall lacks a
significant advantage over the deterministic optimisation due to the dominance of the cruising phase in the overall
energy consumption. Leading, the lift-to-drag ratio to be the driving parameter to the overall energy efficiency.
The study also highlights that the adoption of RBDO comes with added computational costs, and more sensitivity
to local minima.

1 Introduction
The rise of Urban Air Mobility (UAM) is posing difficulties for traditional deterministic Multi-Disciplinary Anal-
ysis and Design Optimizations (MADO). UAM, a concept that gained traction from the 2010s onwards [6], differs
radically from conventional air travel in terms of its market dynamics and operational characteristics. This dispar-
ity introduces a significant amount of uncertainty in its mission parameters. This presents a unique challenge for
regular deterministic MADO as they often rely on semi-empirical methods in the preliminary design phases for
sizing [15]. These methods tend to fall apart in such new and unalike fields due to their semi-empirical nature.
Additionally, designers incorporate design margins to manage uncertainties and mitigate risks, leveraging insights
from past experiences [11]. While this strategy enhances the design’s conservatism, it could potentially result in
an overdesigned airframe.

Examples of uncertainty sources within UAM are numerous, e.g vertiports require new types of air traffic man-
agement, such as unmanned traffic management (UTM), this can result in non-conformal approaches and loitering
patterns [16]. Moreover, crucial mission parameters such as mission distance, transition height [14] and cruising
altitude are also hard to predict due to either lack of regulations, dependency on the vertiport or simply lack of
market knowledge [3].

The aim of this paper is to assess the sources of mission uncertainty for a long-range electric Vertical Takeoff
and Landing (eVTOL) aircraft and incorporate them into a reliability-driven design optimisation. This approach
is contrasted with a deterministic baseline design of an eVTOL. To achieve this objective, a recent design of a
long-range eVTOL named the Wigeon is utilized [2].

Previous work on reliability based methods by [11], who compared a deterministic and reliability-based design
optimisation (RBDO) framework for a general aviation aircraft powered by a fuel cell [11]. [4] investigated the



implementation of RBDO in the design of a firefighting airtanker [4]. More examples of applications can be seen
in paper [10]. However, the previously mentioned papers had their reliability influenced by uncertainty in the
performance properties of the aircraft e.g. the zero-lift drag and not by operational uncertainty.

In contrast, paper [5] designed a generic fighter considering mission uncertainties by means of a new methodology
called effectiveness based design, which utilized the core trait of RBDO, imposing a required confidence level on
the mission success rate and optimise the design accordingly. Limited research has been conducted concerning the
application of stochastic methods within UAM however; the objective of this paper is to address this gap.

The paper is organized as follows. In section 2, the original Wigeon framework, the baseline, is presented. Subse-
quently, in subsection 2.2, the outline and quantification of sources of uncertainty are discussed. The subsequent
section, subsection 2.3, introduces and explores the reliability-driven design. Moving forward to section 3, the
results stemming from the various designs are introduced and their implications explored in section 4. Lastly,
conclusions and recommendations are presented in section 5 and subsection 5.1, respectively.

2 Methods

2.1 Baseline: The Wigeon
The Wigeon was developed for the Design Synthesis Exercise of 2021 and is a tandem rotating wing configuration
with 12 propellers. Its MADO coupled as shown Figure 1.

Figure 1: N2 chart illustrating the coupling of the MADO used in the deterministic baseline version of the original
Wigeon design.

The MADO framework consists of a dual-loop structure. An inner convergence loop and an outer optimiser loop.
The inner loop enforces the convergence of the design whenever alterations by the optimiser is made to the the
design. The outer loop changes the optimisation variables accordingly to the cost function at each outer loop. The
MADO framework encompasses three distinct types of variables; constants, internal variables and optimisation
variables. constants require no further explanation. Internal variables refer to the parameters which dynamically
adjust according to the optimisation variables. The internal variables require an initial estimate in order to start the
MADO procedure. Finally, the optimisation variables denote the parameters which are changed accordingly by
the optimiser in order to minimize the objective function. In Table 1 a non-verbose tabular summary of the three
different variables and what parameters they contain is shown.



Table 1: Non-verbose summary of the various vari-
ables involved in baseline MADO framework of the
Wigeon.

Constants Internal Optimisation
Mission MTOM Aspect ratio’s
Airfoil Stall speed Ratio surface area’s
Taper Wing mass Position aft wing
Sweep Battery mass Battery position
Engines wing geometry Figure 2: Mission profile used for mission perfor-

mance analysis.

For an extensive explanation on all the disciplines and how they each size their respective subsystems please refer
to [2]. However, the scope of this paper will limit itself to the mission simulation where the performance metrics
are computed.

In the mission simulation the most crucial metrics are computed, the mission energy and power requirements. A
fixed mission is used with a profile as shown in Figure 2. Two numerical simulation were made. The first is
performed from take-off to the start of cruise and the second simulation concerns itself with the end of cruise until
touchdown. Thus phases 1 to 3 and 6 to 8, respectively. The approach involves determining wing angle and thrust
based on prescribed acceleration values, employing equations of motion in a vehicle-carried reference frame. The
aerodynamic parameters are estimated using lifting line methods, considering lift curve, drag polar and fuselage
geometry. A proportional controller aids in smooth transitions between ground, cruise, and descent, while ensuring
safety close to the ground.

The majority of the energy is consumed in the cruising phase which is simply modeled through a constant speed and
altitude. The brake power required is then computed through the lift over drag ratio and the propulsive efficiency.

The final phase to model is loitering in cruise configuration, i.e horizontal flight. This is performed at the optimal
loiter speed at cruise altitude. Note that no loitering is performed in hover configuration. A complete description
of the numerical simulation including equations can be found in [3].

The optimiser utilizes the energy consumption computed in the numerical simulation as its objective function. In
the baseline version, the Constrained By Linear Approximation (COBYLA) optimiser is used [13]. Knowing this,
a formal description of the MADO framework can be stated as in Figure 2.1.

min
x

E(x)

where x = [AR1, AR2,
S2

S1
, x2, xbat]

with bounds 5 ≤ AR1 ≤ 15

5 ≤ AR2 ≤ 15

S2

S1
≥ 0.01

x2 ≤ 8

0.5 ≤ xbat ≤ 2.5

subject to Cmα ≤ 0.12

MTOM ≤ 3175

∆xctrl ≤ −0.1

S2

S1
≥ 0.01

0.7 ≤ b2
b1

≤ 1.3

7.4 ≤ b1 ≤ 14

7.4 ≤ b2 ≤ 14

(1)

Where subscript 1 and 2 indicate the front and rear wing, respectively. Let ∆xctrl be the control margin, Cmα
the

derivative of the moment coefficient with respect to the angle of attack, S the wing surface area, AR the aspect
ratio and x the longitudinal position. The function E(x) represents the energy consumption as a function of the
design vector x

The constraints and bounds set follow from either physical limitations or regulations imposed by regulatory bodies
such as EASA [7]. For example the mass constraint follows from regulations whilst the span limit is a physical
one to ensure the Wigeon is able to land on helipads.

Then using an initial estimate the MADO framework can be initiated until it has converged to a minimum.



2.2 Sources of Uncertainty
Before moving on to the reliability based adapted version, several sources of mission uncertainty have to be iden-
tified as to be used in the altered MADO. Based on the findings in the previous section several mission parameters
have been identified which have a stochastic nature. The parameters chosen and their respective probability density
functions (PDF) are described in the following sections. All PDF’s are defined in SciPy [19] if any specific infor-
mation is required. Note that loitering in hover configuration is an addition not included in the original performance
simulation.

2.2.1 Range

In the analysis of range distribution, the emphasis is initially placed on flights within Europe, in alignment with
the baseline report’s indication that around 68.3% of aircraft operate in this region [1]. The Wigeon’s projected
urban usage and the need for new infrastructure further support this focus [1]. To facilitate plotting cities and their
respective ranges, a design boundary of 400 km range is set, considering the potential for more range even though
a mass contingency had been applied [2]. This approach is particularly relevant for wealthy, densely populated
metropolitan areas, which are likely to invest in and witness frequent flights.

Obtaining this limit, a plot can be created of all the cities and their respective range as seen in Figure 3, the plot
has been divided under four sub-figures depending on the GDP of the cities. This was done to avoid cluttering.
The black circles represent cities which were isolated, i.e unreachable from any other given city due them laying
outside of the 400 [km] range.

Paris

Madrid

Milan

Munich

BerlinAmsterdam
Dortmund

Rome

Hamburg

London

Dublin

Barcelona

 GDP > 159.2 

Stuttgart
Frankfurt

Stockholm

Brussels

Vienna

Lisbon

Marseille

Cologne

Helsinki

Lyon

Düsseldorf
Warsaw

152.2 > GDP > 84.9

Rotterdam

Prague
Lille

Turin

Utrecht

Budapest

Toulouse
Bordeaux Bucharest

Valencia
Naples

Athens

Gothenburg

Nuremburg

Braunschweig

84.9 > GDP > 58.8 

Malmö

Nantes

The Hague
Bremen

Bonn Dresden

Bologna

Hanover
Antwerp

Brescia

58.8 > GDP 

Figure 3: All 50 cities from [12] plotted with a surround-
ing circle of 400 [km]. A black circle indicating the the
corresponding city is isolated, meaning no connection to
another city.
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Figure 4: The weighted histogram for a range of 400
[km] and the most fitting PDF, a genextreme distribu-
tion.

The isolated cities being Lisbon, Warsaw, Bucharest, Dublin and Athens. Looking at Figure 3, it is clear that most
traffic will be concentrated in central Europe, meaning: France, Germany, Netherlands and England. Yet, there are
some outliers in East and North of Europe but their access to other cities is limited and generally these cities are
situated in the lower GDP range.

A key city in the analysis is London as it has the highest GDP, however it is only connected to central Europe
through few cities in mainland Europe, a large proportion of the flights will occur between London and other
major metropolitan areas, London-Dortmund et cetera. If only direct flights would have been allowed, this would



give a skewed representation of reality hence it was decided to allow one step in between. E.g London - Amsterdam
- Dortmund. This will be referred to as a two-step flight.

Trip probabilities are systematically determined by enumerating feasible trips within the defined limit, forming the
set Ω. For each trip, the GDP summation of departure and destination, e.g., [London-Paris] with GDP C1543.66
million (ζi), is calculated. Iterating over Ω yields a collection of ζi values, aggregating to total population GDP ζtot
Equation 2. Probability of a specific trip is ζi

ζtot
Equation 3.

ζtot =

Ω∑
i=0

ζi (2) P (Ti) =
ζi
ζtot

(3)

The methodology is as follows. A histogram is made of all flights where the two-step flights have been split up into
their child components. The bins of the obtained histogram are then scaled with their probabilistic expectation. As
shown in equation Equation 4, where fbini represents the occurence of the ith bin, Ωbin represents a sub-space of
Ω containing all trips within the ith bin. When child trips from the matching parent two-step flight occur in the
same bin, the rule of addition and multiplication must be applied as shown in Equation 5.

E[bini] = fbini
·
Ωbin∑
j=0

P (Tj) (4)

P (Ti,1 + Ti,2) = P (Ti,1) + P (Ti,2)− P (Ti,1 ∩ Ti,2)

= P (Ti,1) + P (Ti,2)− P (Ti,1|Ti,2) · P (Ti,2)

P (Ti,1 + Ti,2) = P (Ti,1) + P (Ti,2)− P (Ti,2)

P (Ti,1 + Ti,2) = P (Ti,1) = P (Ti,2)

(5)

Where Ti,1 and Ti,2 represent the child trips of the two-step parent trips. The conditional probability P (Ti,1|Ti,2) =
1 in all cases since if one of the child trips occurs, the other by definition must then occur as well. The result from
Equation 5 then imposes altercations on Equation 4 as shown in Equation 6.

E[bini] = fbini ·

(
Ωbin∑
i=0

P (Ti)−
Ωbin∑
i=0

P (Ti,2)if (Ti,2 and Ti,1) ∈ Ωbin else 0

)
(6)

The second summation sign corrects for the term P (Ti,1 ∩ Ti,2, an ”if” and ”and” statement are required since this
only occurred when both child trips occurs in the space Ωbin.

Performing the required analysis and computations then gives the results as shown in Figure 4. A genextreme PDF,
as described in [19].

2.2.2 Transition Height

As detailed in [3], the current simulation approach involves a sequence of actions. The aircraft begins by cruising
at a designated altitude, followed by a controlled descent to the predetermined transition height. At this point,
the aircraft initiates its transition to hover configuration, ensuring it remains above the Hover Hard Deck (HHD)
altitude. Once the aircraft has completely reduced its horizontal speed, it gains the capability to descend below the
HHD and proceed with the landing phase.

This scenario introduces two interrelated variables that require definition: the transition height (htrans) and the
Hover Hard Deck (HHD). These variables are closely linked, where raising the transition height would corre-
spondingly raise the HHD.

Uber Elevate, set up vehicle and mission requirements for vehicles operating on their Elevate network [17]. These
requirements have been used in various studies from eVTOL to concept of operations (ConOps)[18].

The requirements are summarised in Figure 5(a). As can be seen from the table, Uber Elevate recommends to
initiate transition, htrans, at a height of 91 [m] (300 [ft]), and to have the HHD at 15 [m]. However, some papers



have diverged such as [14] which used 500 [m] for the htrans. This however is relatively high when observing
typical helicopter landings. The transition height will depend on the surrounding environment and airspace, in
a metropolitan area like Frankfurt an increased htrans will be required compared to e.g Amsterdam. Thus, the
decision has been made to model the transition through a half-normal distribution as shown in Figure 5(b). Where
the 91 [m] from Uber Elevate has been used a minimum.

((a)) Summary of the mission requirements set by Uber
Elevate[17]
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((b)) The half-normal distribution for the transition height with
a standard deviation of 50.

Figure 5

The final variable which has to be defined is the HHD. It will be defined as in Equation 7. The number 80 has been
derived from the original height difference given by Figure 5(a) from Uber elevate. Thus, the assumptions is made
that transition will always take place with a 80 [m] height difference.

hhhd = htrans − 80 (7)

2.2.3 Loitering

The main purpose of loiter with respect to UAM, will be allowing the eVTOL to wait for a touch and lift-off
(TLOF) area to become available. As, eVTOL batteries only carry limited energy, this waiting time has to be as
minimized. This has sparked a great deal of research into Unmanned Aircraft System Traffic Management (UTM).
Source [14], which simulated multiple algorithms to ensure enough spacing between incoming flights. Another
paper investigated the use of holding circles and holding points to safely lead the incoming aircraft to the TLOF
[16]. Finally, NASA performed a simulation of an entire network of vertiports in Houston, Texas with a demand
model based on rush hours [9]. The most important factors influencing the simulation was the demand model,
amount of VTOL, amount of TLOF and charging stations. Either of these factors could form a bottleneck and
cause a consequential amount VTOL to loiter around the vertiport waiting for an available TLOF. Unfortunately,
their model did not keep track of how long each VTOL was kept on hold. Even if this were the case, it would not
necessarily represent reality as all factors are still highly fluctuable per city. To present these large spread and lack
of knowledge an uniform distribution has been chosen between 0 and 600 seconds. As shown in Equation 8 where
the symbol L is used for the loitering phase.

Lcr ∼ U{0, 600} (8)

The mission profile for the RBDO version will differ in cruising height for the loitering phase thus the mission
profile shown in Figure 2 is altered. Reason being that that loitering will most likely take place in holding circles
at a lower altitude according to [16] [16] . Whether, the aircraft will loiter pre - descent or in a holding circle
post-descent will be dependent on the vertiport, airspace restrictions et cetera. The conservative decision has been
made to only consider loitering post-descent. The loiter altitude should always be above the transition altitude. For
simplification, Equation 9 will be used for the loiter altitude.



hloiter = 1.2 · htrans (9)

Finally, loitering in hover has to be considered, the assumption is made that only incidents will force the Wigeon
to hover as it will mostly try to be avoided. This could for instance occur when an aircraft has to commit to an
emergency landing when the Wigeon has just finished transition to prepare for landing. In this situation the energy
state of the Wigeon would be too low to fly in cruise configuration thus it would have to hover to await a free
TLOF.

The probability of this occurring is slim, therefore a Bernoulli distribution is chosen in combination with time it
takes to descend to the TLOF. Reason being, that the Wigeon will only hover for the amount of time it takes to
clear the TLOF. This can be computed using the descent rate and htrans and a safety factor of 1.4 to account for
any ground procedures. The final distribution is as shown in Equation 10.

Lhover ∼ 1.4 · htrans

vdescent
·Ber(0.01) (10)

2.3 RBDO: The Wigeon
The MADO framework detailed in Figure 1 is altered to implement the mission uncertainty analysis. The for-
mer mission performance simulation has been replaced with a Monte Carlo simulation where a single mission
simulation has been replaced with an array of missions created by sampling the random mission variables. The
methodology of the simulation itself has only been altered such that it contains a probability of a loitering phase in
hover configuration, unlike in the deterministic method.

The Monte Carlo Simulation’s convergence is ensured by conducting a running variance analysis on the energy
consumption samples obtained. A maximum permissible percentual difference between the latest and second-
to-last sets of samples, as well as between the second-to-last and third-to-last sets, is applied as a criterion for
convergence. This process helps determine when the simulation has reached a stable state.

From the resulting mission samples a PDF can be made of the energy consumption and other relevant performance
parameters. The resulting PDF is utilized to impose a confidence interval, this confidence interval indicates the
reliability with which the aircraft can successfully complete the sampled missions. The implication being that due
to taking into account the mission uncertainty, design margins previously built in by safety factors can be removed.
the recombination of the various random variables will result in a minority of missions limiting the performance
of the aircraft throught stringent requirements. Thus to avoid this, the confidence interval is applied. Leading to a
possibly more balanced design.

The formal presentation of the altered MADO framework implementing RBDO is then as shown in subsection 2.3.
The changes with respect to Figure 2.1 being that the function E(x, ζ) is also dependent on the random vector
ζ. Let ci be the the confidence interval, Eci the energy consumption for which the interval holds true. All other
parameters have been previously defined.

min
x

E(x, ζ)

where x = [AR1, AR2,
S2

S1
, x2, xbat]

ζ = [∼ R,∼ Lcr,∼ Lhvr . . .

. . . ∼ htrans,∼ hhhd,∼ hltr]

with bounds 5 ≤ AR1 ≤ 15

5 ≤ AR2 ≤ 15

S2

S1
≥ 0.01

x2 ≤ 8

0.5 ≤ xbat ≤ 2.5

subject to Cmα ≤ 0.12

Prob[E(x, ζ) ≤ Eci ] ≥ ci

MTOM ≤ 3175

∆xctrl ≤ −0.1

0.7 ≤ b2
b1

≤ 1.3

7.4 ≤ b1 ≤ 14

7.4 ≤ b2 ≤ 14

(11)



2.4 Comparative Assessment
The designs configurations shown in Table 2 were used to compare the baseline Wigeon to the altered reliability-
driven framework. The table limits itself to the most influential parameters to the design outcome. For a full
description of the configuration please see [8] (request for access required as of March 15, 2024). Let Niter

be the amount of iterations the MADO stays within the convergence loop, MCS target the maximum required
percentual difference between the sets of samples setn, setn−1 and setn−1 setn−2. Finally let initial AR1,2 be
the initial aspect ratios of the front and aft wing, respectively. As seen in Table 2, three deterministic designs and
two reliability driven designs were made. Each design configuration purposely chosen shown to illustrate different
phenomenon.

Table 2: The initiated MADO design and their relevant initia-
tion parameters. See source [8] for full description of starting
conditions.

Label D1 D2 D3 RBDO1 RBDO2
MADO
type Dtr Dtr Dtr RBDO RBDO

Niter 10 8 10 8 10
Initial
AR1,2

[8,9] [7,7] [10,12] [7,7] [10,13]

MCS
target - - - 0.45% 0.45%

ci - - - 90% 90%
Dtr Range [km] 400 400 375 - -
Dtr Loiter [min] 10 10 8 - -
Dtr Transition
height [m] 180 180 150 - -

Dtr cruising
height [m] 1000 1000 1000 1000 1000

Mass
contingency False False 10% False False

Table 3: Results from the various design following
from the parameters as shown in Table 2.

D1 D2 D3 RBDO1 RBDO2
m [kg] 1 2144.6 2173.1 2387.3 2058.0 2039.8
AR1 [-] 10.4 10.0 9.3 10.9 10.1
AR2 [-] 13.9 13.3 12.6 10.8 13.7
b1 [m] 8.0 8.0 8.1 7.0 7.8
b2 [m] 10.5 10.3 10.5 8.4 10.1
S1 [m] 6.2 6.4 7.0 6.6 6.0
S2 [m] 7.9 7.9 8.7 7.0 7.5
E [kWh] 168.9 175.0 178.6 161.1 154.9
S2

S1
[-] 1.27 1.23 1.24 1.06 1.24

xbat [m] 2.5 2.5 2.5 2.5 2.4
x2 [m] 8.0 8.0 8.0 8.0 7.3

Maximum take-off mass

It is important to note the subtle differences between the configurations. Let us first shortly discuss the determin-
istic designs. D1 and D2 had an identical set up in deterministic mission, however their initial estimate for the
aspect ratio differed. D1 and D2 were used to compare the deterministic MADO to the RBDO method without
influence from the mass contingency, simplifying the interpretation of the driving parameters. In contrast, design
D3 investigated a more realistic scenario where the deterministic design mitigates risk by applying a mass contin-
gency. To this purpose the deterministic mission was altered, decreasing the range, loiter and transition height by
minor increments. The risk of the deterministic design being an underestimation of the mission parameters, which
was dealt through by the mass contingency.

On the contrary, the RBDO method encompasses a distribution of missions and a confidence interval to deal with
the equivalent risk. Therefore, a mass contingency is not required. The reliability-driven design consists of two
configurations with different initial aspect ratios to investigate local minima.

3 Results
The result of the different designs can been in Table 3, all optimisation variables are shown and additionally other
internal parameters deemed relevant. A discussion on the results of the designs will follow in section 4.

To observe the difference in performance between the RBDO and the baseline of the Wigeon, the baseline was
subjected to a range of mission as defined by the random variables. Similar to the RBDO method, the resulting
energy consummations were collected and a PDF fitted. The resulting PDF and cumulative distribution function
(CDF) are compared to the RBDO solution in Figure 6(c), Figure 6(b) and Figure 6(a). The red area under the
graphs of the design of the RBDO method indicate the mission space which is excluded from the confidence
interval.

The preceding plots provided a general overview of total energy consumption. To offer a more detailed breakdown,
Figure 6(d) presents a pie chart illustrating energy consumption across different phases. Each pie’s size reflects the
90th percentile, while the expectation and standard deviation for that phase are presented for reference.

Additionally, to gain a better understanding of how the mission parameters influence the energy consumption the
correlation coefficients of the resulting mission samples were computed and shown in Table 4.
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((b)) PDF of D1 and RBDO2 shown in blue and orange, re-
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excluded by the confidence interval.
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Figure 6: Visual illustrations of the performance of the various designs defined in Table 2.

Table 4: The correlation coefficients between the mission energy random variable and the defining mission random
variables.

E R Lcr htrans hltr Lhvr

E 1 0.985 0.148 0.183 0.183 0.045

Finally, observing the weight distribution of the different designs gives insight into what trade-offs are being made.
In accordance with this aim, a pie chart comparing design RBDO1 and D1 is shown in Figure 7.

4 Discussion
The purpose of this paper was to investigate and quantify the mission uncertainty for a long-range urban Air Mobil-
ity (UAM) vehicle and implement them into an reliability-driven design optimisation. With the main goal of com-
paring its performance to a traditional deterministic multidisciplinary analysis & design optimization (MADO).

The differences between the deterministically designed aircraft and the reliability-driven design are minimal when
comparing them without any mass contingencies. This is shown by Figure 6(b), here the performance of D1 and
RBDO2 are compared through their respective CDF. The resulting CDF are nearly identical only having a slight
difference due to the fact that RBDO2 is subjected to less stringent mission requirements. This is indicated by
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Figure 7: Pie charts of the weight distribution of design RBDO1 and D1

the red area, which marks the area of the top 10% most energy consuming missions not sized for. The maximum
take-off mass advantage of design RBDO2 is portrayed by increased probability of flying missions with lower
mission energies (and vice versa) as shown in Figure 6(b), where the CDF of RBDO2 remains above D1 until they
intersect at roughly 135 [kWh].

Upon review of Figure 6(d), it becomes apparent why RBDO2 and D1 exhibit a strikingly similar design. The
data depicted in Figure 6(d) highlights that, despite the irregular nature of missions in UAM, the cruising phase
accounts for the majority of the energy consumption. Reason being that the Wigeon is a long-range UAM vehicle,
therefore the cruising phase remains considerably long. The consequences of the dominating cruise phase being
that the lift-over-drag becomes the driving parameter of the design, hence a nearly identical design with high aspect
ratios and a significantly larger rear wing is preferred. This is further confirmed by Table 4, where the correlation
coefficient for the random variable, ∼ R , is extremely high almost reaching 1. Whilst the loitering in cruise
configuration and transition height only show a weak positive correlation. Lastly, loitering in hover configuration
gets completely diluted by the other dominant parameters. Based on these findings, the reliability driven method
might be more suitable to short-range UAM vehicles.

When using mass contingencies however, a clear advantage can be seen. The result being as shown in Figure 6(a).
The mass contingency snowballs the deterministic design into a much heavier design, severely effecting the per-
formance. Whilst the contingency ensures the aircraft can still perform a majority of the missions while being
affected by an underestimation of the mission parameters. The results suggest that it comes at a cost of moving
away from the optimal design and an oversized battery. The proof being that the aspect ratio is noticeably smaller
for D3, most likely to keep the structural weight down. Thus, overall adding design margin is not as suitable as a
reliability-driven design is at mitigating risk. Nonetheless it is worth noting that while the current RBDO method
tackles operational uncertainty, various of other sources of uncertainty are still present within the design e.g mass
estimation methods. Therefore, completely removing the mass contingency from the RBDO method might have
given a skewed interpretation of the results.

RBDO1 was the sole design to converge to a solution with relatively lower aspect ratios and equally sized wings.
Suggesting it suffered from a local minimum it encountered starting from lower initial aspect ratios, the minimum
caused by the fact that wings with higher aspect ratios are structurally heavier. This is illustrated by Figure 7,
the rear wing for RBDO1 represents a lesser percentage than for D1. Notably, D2 does not suffer from this local
minimum nearly as much even though starting from the same initial conditions. Nonetheless, it still ends up with
slightly lower aspect ratios and a heavier design. Whilst not definitive proof, this is likely caused by the fact that
a design with lower aspect ratios is not penalized as severely by the objective function in the RBDO framework.
As the cases where lift-to-drag ratio is especially important, high range and long loitering, are excluded from the
reliability-driven method. Thus, when the optimiser increases the aspect ratio, the structural weight increases,
having a more negative effect on the overall distribution of missions. Resulting in the optimiser staying within this
local minimum. All in all, the results demonstrate that the RBDO framework is more sensitive to local minima.

5 Conclusion
This study provided insights into the integration of mission uncertainty analysis using RBDO for long-range urban
Air Mobility vehicles. While successful in demonstrating that the reliability driven design is more suitable for
mitigating risk in contrast to using safety factors, the method’s superiority over the deterministic MADO was



limited due to the energy intensive cruising phase. Leading the lift-over-drag ratio to be the driving parameter
to be optimised for rather than a more moderate design with less structural weight for transition and hovering
operations. Additionally, due to presence of uncertainty in areas other than its operation, safety factors might still
be required or additional stochastic parameters added to the method. Finally, the reliability driven design also has
additional sensitivity to local minima compared to the traditional deterministic method.

5.1 Recommendations
Several challenges were encountered when assessing the results, including computational power limitations and
sensitivity to local minima. The computational power could be addressed by generating a more computational
efficient numerical simulation. The potential for doing so being high, as it is currently implemented in Python,
a notorious inefficient language. Regarding the sensitivity to local minima, an alternative optimisation technique
could prove beneficial. An example being the genetic algorithm, which is useful at mitigating issues related to local
minima. However, it’s important to note that implementing this strategy might introduce additional computational
overhead. Lastly, it is worth considering that the RBDO method might be better suited for UAM vehicles with
shorter ranges, as they would experience a less dominant cruising phase. Exploring the application of this method
to short range vehicles would provide valuable insights into its performance and effectiveness within a different
mission domain.
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