
Land subsidence prediction over an off-
shore reservoir in Italy by a sequential 
data-integration approach 
 
L. Gazzola1, M. Ferronato1, P. Teatini1, C. Zoccarato1  
 

1 Department of Civil, Environmental and Architectural Engineering, University of Padova, Padova, Italy  
 
laura.gazzola.1@phd.unipd.it 
 
Session: Modelling and Matching – Strategies & Pathways 
Keywords: Data Assimilation; Subsidence Modelling; Uncertainty Quantification 

Introduction 
Uncertainty in prediction of land subsidence due to hydrocarbon extraction from productive reservoirs 

can be reduced by exploiting the available measurements. A comprehensive workflow (Gazzola et al., 

2021) combining different Data Assimilation (DA) approaches has been developed, with the aim to 

account for and reduce uncertainties by progressively training a numerical model as new data are 

integrated. After identifying the most influential uncertain factors and their confidence intervals, a 

forward geomechanical model provides the initial forecast ensembles of Monte Carlo realizations. A 

preliminary diagnosis of the forecast ensembles is carried out by the χ2-test (Fokker et al., 2016) and 

the Red Flag (RF) technique (Nepveu et al., 2010), in order to evaluate the actual representativeness 

of the monitored process, e.g., land settlements recorded by a GNSS station or deep compaction from 

radioactive markers. Then, if the preliminary diagnostic response is positive, DA is used to constrain 

the ensembles with the available measurements, otherwise new ensembles should be built. In the 

present work, the model is updated through the Ensemble Smoother (ES) technique (Leeuwen & 

Evensen, 1996), which is an ensemble-based non-sequential algorithm that provides a simultaneous 

update of both the state and parameter ensembles by combining prior information, measurements, 

and the solution of the numerical model. The ES outcome is the most reliable prediction according to 

the currently available observations. The updated parameters from ES are used as new input for the 

geomechanical model to create new forecast ensembles. The latter are integrated in the workflow 

when new measurements become available and so the overall procedure can be repeated starting 

from the diagnostic step. The repetition in time during and after the reservoir production life allows 

for a progressive improvement in the prediction confidence and reliability. For more details, the 

reader is referred to Gazzola et al. (2021).  

This work presents an application of the proposed approach to a real-world off-shore hydrocarbon 

reservoir buried in the Adriatic basin, Italy. 

Real-world application on an off-shore hydrocarbon reservoir 
The area of interest is located off-shore in the Adriatic Sea about 60 km from the Italian coastline. The 

reservoir structure is an anticline with two culminations within a turbiditic Pleistocenic formation, 

resulting in a complex multi-pay system with more than one hundred active layers of meter- to 

centimeter-thickness lying between 900 and 1800 m below mean sea level. Pressure data, different 

from layer to layer, are measured for 13 years (today) and predicted over the following 42 years by a 



history-matched reservoir model (Fig. 1a). In this work, we assume the pressure behaviour in time and 

space to be deterministic, with the main uncertainties related to the nature and value of the 

geomechanical parameters governing the reservoir rock behaviour. We consider two constitutive laws 

for the active layers: a standard modified Cam Clay (MCC) and a visco-elasto-plastic (VEP) model 

(Isotton et al., 2019). Uncertainties are associated with the most influential parameters for these laws: 

the modified compression index λ* for MCC, and λ* and the initial overconsolidation ratio R for VEP. 

The range of variability of these parameters is estimated from laboratory tests and used to generate 

two initial forecast ensembles (Tab. 1). Different kinds of measurements in different time periods 

become available during the reservoir lifetime (Fig. 1b). In particular, two GNSS stations record the 

sea bottom displacements over time from year 4, a spatially distributed measure of the seabed 

movements is given by two bathymetric surveys at years 3 and 10, and deep compaction data are 

collected by radioactive markers from year 6. 

LAW UNCERTAIN PARAMETER DISTRIBUTION 

MCC ln(λ*) ∼ Ɲ(-2.58; 0.44) 
VEP ln(λ*) ∼ Ɲ(-2.58; 0.44) R ∼ U(1.1; 1.5) 

 

Table 1 Characterization of the forecast ensembles. Constitutive law and prior distribution (with mean and variance) of 
the parameters λ* and R. 

 

Figure 2 a) Pressure change evolution over time: normalized values in a shallow, middle and deep layer of the reservoir. b) 
Surface displacements over time measured by the two GNSS stations (dots are the assimilated values). On the bottom left 

corner the timeline shows the 55 years of pressure data along with the availability of the GNSS data (red arrow), the 
bathymetric surveys (purple stars) and the radioactive marker measurements (green arrows). 

Modelling results 
The availability of new measurements dictates the frequency of the subsidence model update. In this 

case, the model is updated every three years starting from year 7. The number of assimilated 

measurements at each update is reported in Table 2.  

The initial prediction relies on the ensembles created from the estimated parameter ranges (Tab. 1) 

with both the MCC and the VEP constitutive behaviour. Such ensembles turn out to be very 

distributed, with surface displacement that can vary by about a factor of 20. At year 7, three years of 

GNSS measurements allow for a first diagnosis of the ensemble quality. The value of the χ2 turns out 

to be equal to 1223 for the MCC and 16 for the VEP ensemble, while RF does not provide significant 

indications. This points out the better suitability of the VEP model, which presents a lower χ2 value. 

However, considering the limited amount of available data, both the ensembles are kept for the 

update step. The ES application provides a dramatic reduction of the initial uncertainty. Fig. 2 shows 

the (normalized) land subsidence at a GNSS location in time before (grey) and after (red) the ES, while 

Fig. 3 reports the Cumulative Distribution Function (CDF) for the uncertain parameters. 



YEAR 
MEASUREMENTS 

G M B TOT 

7 13 - - 13 
10 25 12 - 37 
13 37 20 13 70 

 

Table 2 Amount of available measurements for each assimilation date, respectively recorded from the GNSS stations (G), 
radioactive markers (M) and the bathymetry (B). 

 

Figure 2 Forecast (grey) and updated (red) displacements in time with ES at year 7. 

 

Figure 3 CDF of ln(λ*) for MCC (left) and VEP (center), and CDF of the parameter R for VEP (right) at year 7. 

Both the models are well constrained through the available measurements for both the states and the 

parameters ensembles. The mean and variance of the updated parameter ensembles are used to 

create the parameter distributions for the generation of the new forecast ensembles. In particular, 

the update distribution for the MCC is ln(λ*)∼Ɲ(-3.32; 0.08), while for the VEP model the updated 

distributions are ln(λ*)∼Ɲ(-3.05; 0.11) and R∼Ɲ(1.28; 0.01).  

A new model update is carried out at year 10. In addition to the data from the GNSS stations, deep 

compaction measurements are available at this time. The results of the diagnostic step are consistent 

with those at year 7, pointing again to the unfitting of the MCC model that is now discarded. The ES 

application on the new ensemble built on the VEP model is shown in Fig. 4. The newly assimilated 

measurements allow to further reduce the model uncertainties, in both the states and the parameter 

prediction. This is particularly true for the displacement update, where the forecast is becoming more 

and more reliable. On the parameter side, distributions are also less uncertain, but the update is not 

fully satisfactory, because the update of the parameter R includes some non-physical values (R<1). 

From those updates, the new parameter ranges are derived: ln(λ*)∼Ɲ(-3.13; 0.05) and  

R∼Ɲ(1.08; 0.002). In the new ensemble construction, the non-physical values of R, which are located 

just on the tail of the distribution, are discarded.  



At year 13 we carry out the last model update including the data-set from the bathymetric surveys. 

The diagnostic step confirms the representativeness of the current ensemble. The results of the final 

model update through the ES application are shown in Fig. 5. If we compare the resulting update 

ensemble with the initial forecast, a dramatic reduction of the uncertainty can be observed. The 

numerical model has progressively learned from the observations and its reliability is substantially 

improving. Notice also that, after the assimilation of the new measurements, the updated parameter 

distribution of R regains a physical meaning. This model represents the most reliable land subsidence 

prediction available to date. 

 

Figure 4 ES application for the VEP model at year 10. 

 

Figure 5 ES application for the VEP model at year 13. 

Conclusion 
A comprehensive workflow based on a sequential data-integration approach has been developed and 

applied to a real-world off-shore reservoir in Italy. The land subsidence model is progressively trained 

in time through the assimilation of new data, with an increasing reduction of the uncertainties. Even 

though at some points non-univocal parameter updates can be encountered, displacement ensembles 

are effectively and progressively constrained, providing more and more reliable predictions that can 

be of great help in supporting decision-making processes. Future developments concern the use of 

the proposed approach to identify the most influential class of measurements to better improve the 

model prediction, so as to drive the effective design of the most useful monitoring programs. 
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