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Introduction

• Concept for core monitoring and diagnostics via reactor neutron 
noise

Unfolding technique: from 
the effect to the cause

Identification and localization 
of perturbations

Neutron flux measurements in normal 
operations from ex-core and in-core 

detectors

Reactor neutron noise
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Introduction (SMRs)

Reduced power level

Standardized and
modular core 
components

Easier to meet 
the safety 
requirements

Economically
competitive
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Introduction

Objectives of the project

• Characterize reactor neutron noise in SMRs
• In small systems such as SMRs: 

How strong is the spatial component with respect to point-kinetics?

• Develop ANN models to unfold the problem and identify perturbations in SMRs 
from reactor noise
• Train and test using data from simulations

• Study detection system in SMRs for core monitoring via reactor noise
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Introduction

• Frequency-domain, 2-group diffusion-based solver CORE SIM+

• Characterization of reactor noise in SMR

• Generation of synthetic dataset for training and test of ANN models

Static module

ϕ1,0 and ϕ2,0

𝑘𝑒𝑓𝑓

Neutron 
noise module

𝛿ϕ1 and 𝛿ϕ2

𝛿Σ

Nuclear data
Geometry

Computational mesh
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Characterization 
of reactor neutron 
noise in SMRs
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Reactor neutron noise in SMRs

• Small water-cooled reactor core model developed for the study
• Derived from a typical large PWR

𝑘𝑒𝑓𝑓=1.0052

Diameter = 150.5 cm
Height = 200 cm
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static flux

9



Reactor neutron noise in SMRs

• Investigation of noise induced by

• Absorber of Variable Strength (AVS)

• Fuel Assembly Vibration (FAV)

𝛻.
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0 𝐷2,0 𝑟
𝛻 + 𝜮𝒅𝒚𝒏 𝒓, 𝝎 ×

𝛿𝜙1 𝑟, 𝜔

𝛿𝜙2 𝑟, 𝜔
=

𝑆1 𝑟, 𝜔

𝑆2 𝑟, 𝜔

𝑆1 𝑟, 𝜔

𝑆2 𝑟, 𝜔
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𝛿𝛴𝑎,1 𝑟, 𝜔

𝛿𝛴𝑎,2 𝑟, 𝜔
+ 𝝓𝒇 𝒓, 𝝎

𝛿𝜐𝛴𝑓,1 𝑟, 𝜔

𝛿𝜐𝛴𝑓,2 𝑟, 𝜔
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Reactor neutron noise in SMRs

• Fuel Assembly Vibration (FAV)
• Modeling of the vibration along the y-direction

y

x

I

II

III

𝛿𝛴𝛼,𝑔 𝑦, 𝜔 =  ቐ
−𝑖

𝜋

2
 ∆𝛴𝛼,𝑔 𝛿 𝜔 − 𝜔0 ,  𝑤𝑖𝑡ℎ 𝑦0 − 𝜖 ≤ 𝑦 ≤ 𝑦0 + 𝜖

0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

∆𝛴𝛼,𝑔 is the difference between the 𝛴𝛼,𝑔 associated

with the two regions separated by the boundary.
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Central vibration
Symmetric SMR Symmetric large PWR

Noise source Noise source

Relative 
Thermal 

Noise
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Central vibration
Asymmetric SMR Asymmetric large PWR

Noise source Noise source
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Periphery vibration 1
Asymmetric SMR Asymmetric large PWR

Noise source Noise source

Overwhelming PK- 
component
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Periphery vibration 2
Asymmetric SMR Asymmetric large PWR

Noise source Noise source

Behavior highly 
dependent on 𝛴 not 

only reactor size 
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ML for detecting 
reactor noise source 
location in SMRS
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Machine learning for reactor noise source location detection

For 2D SMR:

Objective: Detect locations for one or more AVS reactor noise source at f=1 Hz.

Input Output

Artificial Neural 
Networks (ANNs)

AVS Noise 
sources

Approach: Train an ANN model using simulated cases.

Relative Thermal Noise 
distribution
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Machine learning for reactor noise source location detection

Approach: 
• Train an ANN model using cases with 1 or 2 AVS reactor noise sources

Training dataset

~ 500,000 cases

1 AVS source 2 AVS sources

𝛿𝛴𝑎1, 𝛿𝛴𝑎2 
cases at f=1 Hz

𝛿𝜙2 𝑟

𝜙2 𝑟

Amplitude Phase angle

• Test the ANN model on cases with 1 or multiple AVS reactor noise sources
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32

32

32 x 32 = 1024 nodes

ANNs: Feed- Foward NN

𝑥1

𝑥2

𝑥2048

𝑥3

ℎ1

ℎ2

ℎ3

ℎ𝑁

𝑤1,1

𝑤2,1

𝑤3,1

𝑤2048,1

𝑧1 = 𝑥1 ∗ 𝑤1,1 + 𝑥2 ∗ 𝑤2,1 + 𝑥3 ∗ 𝑤3,1 +  … + 𝑥2048 ∗ 𝑤2048,1 + 𝑏1

ℎ1 = 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑧1)

Input layer Hidden layer/s

1024 Amplitudes
1024 Phase angles

= 2048 values
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ℎ1 = 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑧1)

𝑧1 = 𝑥1 ∗ 𝑤1,1 + 𝑥2 ∗ 𝑤2,1 + 𝑥3 ∗ 𝑤3,1 +  … + 𝑥2048 ∗ 𝑤2048,1 + 𝑏1

𝑥1

32

32

32 x 32 = 1024 nodes

𝑥2

𝑥2048

𝑥3

ℎ1

ℎ2

ℎ3

ℎ𝑁

Input layer Hidden layer/s Output layer

𝑦1

𝑦2

𝑦1024

𝑦3

𝑦𝑛 is a classifier for 
node n in the 

reactor system.

< 0.5

No source Source

> 0.5

Feed-Forward Propagation

𝐿𝑜𝑠𝑠 = 𝑒𝑟𝑟𝑜𝑟_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑦𝑇𝑟𝑢𝑒 , 𝑦𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)

Backpropagation
1024 Amplitudes

1024 Phase angles
= 2048 values

ANNs: Feed- Foward NN
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Results for Feed-Forward NN
Predicting cases with 𝛿𝛴𝑎1, 𝛿𝛴𝑎2 at f=1 Hz 
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ANNs: Convolutional NN(CNNs)

32

32

32 x 32  representation
X 2 layers (Amplitude and Phase)

Input layer Hidden layer/s Output layer

Apply 
filters

No source 
present

Source 
present

𝐿𝑜𝑠𝑠 = 𝑒𝑟𝑟𝑜𝑟_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑦𝑇𝑟𝑢𝑒 , 𝑦𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)
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Results for CNN
Predicting general cases with 𝛿𝛴𝑎1, 𝛿𝛴𝑎2, 𝛿ν𝛴𝑓1, 𝛿ν𝛴𝑓2, 𝛿𝛴𝑟𝑒𝑚 

at f=1 Hz 
Predicting cases with 𝛿𝛴𝑎1, 𝛿𝛴𝑎2 at f=1 Hz 
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Results for CNN

           

                      

    

     

     

     

     

     

     

     

     

     

 

 
 
 
 
  

           

                      

      

       

      

       

      

       

      

       

      

       

 

 
  
 
  
  
 

New model: Trained using general cases with 𝛿𝛴𝑎1, 𝛿𝛴𝑎2, 𝛿ν𝛴𝑓1, 𝛿ν𝛴𝑓2, 𝛿𝛴𝑟𝑒𝑚 cases at f=1 Hz

Results for testing on general cases 
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Conclusions and 
future work
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Conclusions

• Characterization of reactor neutron noise in SMRs
• Comparison of FAV between large and small water-cooled reactors.

• Spatial component in SMRs leads to deviations from point-kinetics
• Possibility of retrieving information about type and location of perturbations 

• Development of ANN models for the inverse task to detect AVS locations 
in 2D
• Results indicate ability to detect locations of up to 10 AVS sources simultaneously 

by training on only 1 and 2 sources.
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Future work

• Further characterization of the reactor neutron noise types in SMRs.

• Travelling perturbations with coolant flow

• Expand ANN models to 3D SMRs.

• Train ANN models to generalize over different types of noise and include 

more frequency ranges.
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