Synchrophasors vs Routable-GOOSE: Wide Area Applications Perspective

Dr. Mital Kanabar, P.Eng.

Office of Innovation Leader Grid Automation- Grid Solutions GE Renewable Energy

Outline

Introduction to Routable mechanism of the GOOSE

Synchrophasor vs R-GOOSE mechanisms

Synchrophasor vs R-GOOSE – a comparative example

R-GOOSE based wide area application – a case study

Cyber security & Performance considerations

Lessons learned & summary

Introduction to Routable-GOOSE

T₁ - TxGOOSE1 RETRANS TIME setting value

R-GOOSE messages are routed over layer-3 routers with UDP/IP headers; multicast over IP networks using IGMPv3 protocol

Synchrophasor and R-GOOSE

Parameters	Synchrophasors	R-GOOSE
Publications	IEEE C37.118.1/.2	IEC 61850
Communication	Client/Server (IP Unicast)	Publisher/Subscriber (IP Multicast)
Data transmission	specified rate, 1Hz to 120/240 Hz	Event-driven (1-2 Hz for no event; retransmission for events)
Data items	Synchrophasors, Freq Analog, Digital	Analog and Digital (status)
Security	Not inherently	Key Distribution Center (KDC)
Priority	Regular (due to high data rate)	Higher (Event driven)
Networks	Regular IP/Layer-3 Router	IP/Layer-3 Router with IGMPv3 (firewall to support as well)
Configuration	CFG frames (CFG-1, 2)	ICD, IID, CID files

Synchrophasor vs R-GOOSE

Parameters	Synchrophasors	R-GOOSE	
Frame size	100 Byte	100 Byte	
Data rate	30 frames/sec	5 frames/sec (worst case-1 event per second per device)	
Number of devices transmitting	100 devices	100 devices	
Byte Per Second over	100*30*100=300000	100*5*100=50000 Bytes/sec	
network	Bytes/sec	(worst case)	
Bandwidth requirements	300000*8= <u>2.4Mbps</u>	50000*8= <u>0.4Mbps</u> (worst case)	
Number of	1	Many (IP multicast)	
locations/devices data received			
Storage requirements per	300000 *3600*8760=	50000*3600*8760=	
Year	9.4 Tera Bytes	1.6 Tera Bytes (worst case)	
Typical performance100 milliseconds to fewrequirementsseconds		<10 ms	

R-GOOSE based Remedial Action Scheme – a case study

Cyber security considerations

Performance considerations

1	2	3 4	5A	5B	5C	
0	1 2 3 4	5 6 7	8 9 10 Time in Cycles	11 12 13	3 14 15 16	
		Time	Operational E	Events	1 cycle = 16.7 milliseconds	
	Step 1	@ 0 Cycle	3 Phase Fault on	the Bus		
	Step 2	@ 1 Cycle	Relay Processing time for trip signal to CBs		Event Detection Fault	
	Step 3	@ 5 Cycles	s Open CBs for Clearing:		Clearing:	
	Step 4	@ 7 Cycles	RAS Logic Processing for trip signal to CBs to trip generators		RAS Processing:	
	Step 5A	@ 10 Cycles	Open CBs associated with 12 generators (I Batch Mitigation)		ĺ	
	Step 58	@ 12 Cycles	Open CBs associ 4 generators (II B Mitigation)	ated with atch	Mitigation Generation Tripping / Load Shedding:	
	Step 5C	@ 16 Cycles	Open CBs associ 2 generators (III) Mitigation)	ated with Batch		

Lesson's Learned & Summary

- ✓ Requirements right from planning stage
 - ✓ Cyber security & Performance
 - ✓ Redundancy & Remote testing
- ✓ Utility communication network
 - ✓ Segregate traffic of R-GOOSE and Management
 - ✓ Bandwidth requirements to meet performance
 - ✓ Firewall not blocking IGMPv3 traffic
- ✓ Implementation Agreement and technical workshops are useful for high-tech projects
- High-speed + secured R-GOOSE can be achieved for wide-area applications
 - priority tagging, VLAN, IP Class of Traffic
- Security mechanisms supported by R-GOOSE
 - Key Distribution Center
 - Consider Infrastructure to be supported
- Synchrophasors vs R-GOOSE for WAPC >> Select per application & network requirements

IEEE Standard for Phasor Data Concentrators for Power Systems

Sponsor

Power System Relaying Committee of the IEEE Power and Energy Society

Approved 21 March 2019

IEEE-SA Standards Board

Vasudev Gharpure, Chair

Mital Kanabar, Vice Chair

Members:

Harold KirkhamJeff OttoJay MurphyAddis KifleMahendra PatelDeepak Maragal

