Adaptive Out-of-Step Protection Based on Wide Area Measurements

> Marko Tealane <u>TUDelft | TalTe</u>ch

Outline

- What is an out-of-step condition and conventionally used protection.
- The developed adaptive out-of-step protection concept.
- Hardware-in-the-Loop (HiL) test setup.
- Testing results.

Out-of-step condition

- What is an out-of-step condition?
- Disturbances can propagate into a larger scale event, causing a major imbalance between the mechanical input and electrical output power of generators. This major imbalance can result in a loss of synchronism in the power system and is referred to as an out-of-step (OOS) condition.
- During the OOS condition large oscillations of currents and voltages occur, which cause additional mechanical and thermal stresses on power system components.

Out-of-step condition

- Protection?
- The conventional OOS protection is realized by impedance relays which use the apparent impedance seen by the relay to detect an OOS condition.
- These relays require correct settings to function as intended.
- With more renewable energy sources being integrated into the power system, the generator composition becomes harder to predict. This complicates the calculation of settings further.
- A new OOS protection algorithm, using wide-area measurement is proposed and tested.

The developed adaptive algorithm

- How it works?
- The goal is to develop an easily implementable out-of-step tripping algorithm that is adaptive in real-time and requires minimal settings.
- The developed algorithm relies on the computation of system impedances seen from remote ends of a transmission line.
- To compute the system impedances on seen from the remote ends of transmission lines the following equation is used [1]:

$$\underline{Z}_{eq} = \frac{\underline{V(t_2)} - \underline{V(t_1)}}{\underline{I(t_2)} - \underline{I(t_1)}} = -\frac{\underline{\Delta V}}{\underline{\Delta I}}$$

The new adaptive algorithm (1)

How it works?

The new adaptive algorithm (2)

- How it works?
- Full system impedance is computed on the bus and reduced to only <u>Z</u>_{src} on both ends of the transmission lines by using the following formula:

$$\begin{array}{rl} & \underline{Z}_{src1} = -\frac{\underline{V_1}(t_2) - \underline{V_1}(t_1)}{\underline{I_{r1}}(t_2) - \underline{I_{r1}}(t_1)} \cdot \\ & \underline{I_{r1}}(t_1) - \underline{I_{r1}}(t_2)}{\underline{I_{r1}}(t_1) - \underline{I_{r1}}(t_2)} - \underbrace{\left(\underline{I_{tl}}(t_1) - \underline{I_{tl}}(t_2)\right)}{\underline{\Delta V_1}} = \\ & -\frac{\underline{\Delta V_1}}{\underline{\Delta I_1}} \underbrace{\underline{\Delta I_{r1}} - \underline{\Delta I_{tl}}}{\underline{\Delta I_{r1}} - \underline{\Delta I_{tl}}} = \frac{\underline{\Delta V_1}}{\underline{\Delta I_{r1}} - \underline{\Delta I_{tl}}} \end{array}$$

The new adaptive algorithm (3)

- How it works?
- From computed system impedances a power-angle curve is built.
- On power-angle curve the last stable angle is fixed by using the computed angle difference between the sources ($90^{\circ} < LSA < 130^{\circ}$).
- The angle δ between two equivalent sources is computed using measured voltages and currents and computed impedances.
- Operation criteria:

Substation images: https://www.pinterest.com/pin/858428378953096585/ Transmission network image: https://www.tdworld.com/overhead-transmission/article/20972742/linevision-launches-asset-health-model-for-utility-transmission-line

HiL test setup

Hil test setup

- Test network
- IEEE 39 bus benchmark system is taken as a basis for larger system studies to investigate the out-ofstep protection performance.
- Implementation of wind power plants into the network.
- Two scenarios are demonstrated in the network:
 - Case study A, in red, to represent swings between two system parts.
 - Case study B, in blue, to represent swings between single machine – infinite bus.

Testing results

- Impedance computation
- To test and validate the impedance computation part of the new algorithm a simple system was developed and the following results were obtained.

Hil testing of the algorithm using RTDS (1)

Algorithm behavior for stable and unstable power swings in the network

Hil testing of the algorithm using RTDS (2)

Algorithm behavior for grid events – SLG on protected line

Measured quantities

Hil testing of the algorithm using RTDS (3)

Algorithm behavior for grid events – LL outside of the protected line

Hil testing of the algorithm using RTDS (4)

Results for Case study A

Longer transmission line

Shorter transmission line

Hil testing of the algorithm using RTDS (5)

Results for Case study B

Longer transmission line

Shorter transmission line

TAL TECH

SIHTASUTUS ARCHIMEDES

Thank you for your attention

email: M.Tealane@tudelft.nl / marko.tealane@taltech.ee

