To what extent is dynamic susceptibility contrast MRI able to detect subtle blood-brain barrier leakage in cerebral small vessel disease?

Elles Elschot^{1,2}, Walter Backes^{1,2,4}, Joost de Jong^{1,2}, Gerhard Drenthen^{1,2}, Sau May Wong¹, Julie Staals^{3,4}, Alida Postma^{1,2}, Rob Rouhl^{2,3,6}, Robert van Oostenbrugge^{2,3,4}, Jacobus Jansen^{1,2,5,6}.

¹Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, P. Debyelaan 25, Maastricht, the Netherlands;

²School for Mental Health and Neuroscience, Maastricht University, Minderbroedersberg 4-6, Maastricht, the Netherlands;

³Department of Neurology, Maastricht University Medical Center+, P. Debyelaan 25, Maastricht, the Netherlands;

⁴CARIM School for Cardiovascular Diseases, Maastricht University, Minderbroedersberg 4-6, Maastricht, the Netherlands;

⁵Department of Electrical Engineering, Eindhoven University of Technology, De Rondom 70, Eindhoven, the Netherlands;

⁶Academic Center for Epileptology Kempenhaeghe/Maastricht University Medical Center+, P. Debyelaan 25, Maastricht, the Netherlands

Keywords: blood-brain barrier leakage; DSC-MRI; DCE-MRI;

Abstract

Cerebral small vessel disease (cSVD) involves several pathologies affecting the small vessels, including blood-brain barrier (BBB) impairment¹. Perfusion measures derived from dynamic susceptibility contrast (DSC) MRI have been shown to be sensitive to contrast extravasation over the BBB^{2,3}, and correcting for any leakage effects may be crucial to obtain reliable measures^{4,5}. These correction methods might also be applicable to detect BBB leakage itself. This would be a time-efficient alternative to the lengthy dynamic contrast enhanced (DCE) MRI, which is currently most often used for the detection of BBB leakage. This study investigated to what extent DSC-MRI can measure subtle BBB leakage and whether contrast leakage effects are influenced by perfusion.

In vivo DSC and DCE data were collected from 27 subjects with a range in cSVD pathology severity and computer simulations of signal curves were performed to calculate to what limit BBB leakage can be quantified using DSC-MRI. DSC-derived leakage fractions were obtained using the Boxerman-Schmainda-Weisskoff method⁴, both with and without arrival time correction⁵ (K2_{ATC} and K2_{BSW}, respectively). Additionally, we calculated three DSC-derived perfusion

measures: the cerebral blood volume (CBV), cerebral blood flow (CBF), and mean transit time $(MTT)^{6,7}$. The DSC-derived leakage factors $K2_{ATC}$ and $K2_{BSW}$ were compared with the DCEderived leakage rate K_i, obtained from Patlak analysis⁸. Subsequently, differences in the outcome measures were assessed between white matter hyperintensities (WMH), gray matter (GM), and normal-appearing white matter (NAWM).

 $K2_{BSW}$ showed no significant differences between tissue regions (*P*=0.557). Computer simulations confirmed the insufficient DSC sensitivity, as in every region the $K2_{BSW}$ values were below the derived limit of quantification (4·10⁻³ min⁻¹). In line with previous research^{9,10}, K_i was elevated in the WMH compared to GM and NAWM (*P*<0.001). K2_{ATC} showed the opposite relation between the regions compared to K_i (*P*<0.001). Interestingly, the ATC scaling parameters were negatively related to the perfusion measures (*P*<0.001).

We conclude that DSC-MRI is not sensitive enough to measure subtle BBB leakage in cSVD. Using K2 as a direct measure for BBB leakage is not recommended in subtly leaking brain tissue until further research manages to better disentangle perfusion from leakage effects.

References

1. Zhang CE, Wong SM, van de Haar HJ, et al. Blood-brain barrier leakage is more widespread in patients with cerebral small vessel disease. *Neurology*. 2017;88(5):426–432.

2. Dewey BE, Xu X, Knutsson L, et al. MTT and blood-brain barrier disruption within asymptomatic vascular WM lesions. *Am. J. Neuroradiol.* 2021;42(8):1396–1402.

3. Etherton MR, Wu O, Cougo P, et al. Sex-specific differences in white matter microvascular integrity after ischaemic stroke. *Stroke Vasc. Neurol.* 2019;4(4):198–205.

4. Boxerman JL, Schmainda KM, Weisskoff RM. Relative Cerebral Blood Volume Maps Corrected for Contrast Agent Extravasation Significantly Correlate with Glioma Tumor Grade, Whereas Uncorrected Maps Do Not. *Ajnr. Am. J. Neuroradiol.* 2006;27(4):859–867.

5. Leigh R, Jen SS, Varma DD, et al. Arrival Time Correction for Dynamic Susceptibility Contrast MR Permeability Imaging in Stroke Patients. Herholz K, ed. *PLoS One*. 2012;7(12):e52656.

6. Wu O, Østergaard L, Weisskoff RM, et al. Tracer arrival timing-insensitive technique for estimating flow in MR perfusion-weighted imaging using singular value decomposition with a block-circulant deconvolution matrix. *Magn. Reson. Med.* 2003;50(1):164–174.

7. Østergaard L, Weisskoff RM, Chesler DA, et al. High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: Mathematical approach and statistical analysis. *Magn. Reson. Med.* 1996;36(5):715–725.

8. Haar HJ, Jansen JFA, Jeukens CRLPN, et al. Subtle blood-brain barrier leakage rate and spatial extent: Considerations for dynamic contrast-enhanced MRI. *Med. Phys.* 2017;44(8):4112–4125.

9. Li Y, Li M, Zhang X, et al. Higher blood-brain barrier permeability is associated with higher white matter hyperintensities burden. *J. Neurol.* 2017;264(7):1474–1481.

10. Wong SM, Jansen JFA, Zhang CE, et al. Blood-brain barrier impairment and hypoperfusion are linked in cerebral small vessel disease. *Neurology*. 2019;92(15):e1669–e1677.