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Introduction 
Subsidence is often the sum of contributions at multiple depths (Candela and Koster, 2022; Shirzaei 

et al., 2021). Near surface causes of subsidence can be related to construction of infrastructure and 

buildings, land use and phreatic water level management, and the withdrawal of groundwater at 

various depths (Koster et al., 2018). Deep subsurface causes are related to the extraction of 

hydrocarbons (Chaussard et al., 2013), salts (Mancini et al., 2009), and geothermal production 

(Massonnet et al., 2009). Most studies are only focusing on potential subsidence processes at single 

depth levels, although subsidence processes at different depths have been observed in several areas 

(Candela and Koster, 2022 Shirzaei et al., 2021).  Neglecting the contribution of various subsidence 

processes that influence the total signal of subsidence, potentially leads to erroneous interpretations 

of the physical process driving the subsidence (Schroot et al., 2005). 

 

We have combined the exhaustive datasets of the shallow subsurface of the Netherlands (TNO-GSN, 

2022), that previously has been implemented in a regional lithological and groundwater model, with 

reservoir data to model gas extraction related subsidence to arrive at a regional multi-depth 

subsidence model. We introduce a workflow to regionally forecast subsidence originating from causes 

at multiple depths in the Netherlands, with the use of a forward model optimized in a data assimilation 

approach. This workflow is subsequently tested with realistic complex synthetic data. We test how 

well subsidence can be estimated, given the a-priori expected contribution and noise levels. 

 

 

Materials and methods 
Figure 1 shows the overview of the proposed workflow. The first step is to combine subsidence from 

deep and shallow causes, to arrive at subsidence predictions. These subsidence predictions are 

benchmarked with measured subsidence, or, in this paper, with synthetic data. A new subsidence 

prediction is formed with refined parameters. The refinement of the subsidence predictions is done 

in multiple subsequent steps, gaining confidence with each step. The used data, the forward models 

and data assimilation approach are further explained in the sections below. 

 

 

 

 



 

 

(Synthetic) data sets 
To arrive at a realistic synthetic model of subsidence, we used actual subsurface models for lithology 

and groundwater. For the deep processes a pressure depletion model is used over a period of 5 years 

inspired by data from a small gas field in the north of the Netherlands. The modelled subsidence region 

is 20 by 20 kilometers. 

 

GeoTOP is a 3-D geological subsurface model with a x,y,z resolution of 100 x 100 x 0.5 meters. The 

model schematizes the voxels with 100 realizations of the lithology (grainsize composition), following 

the statistical probability of the interpolation. GeoTOP was constructed based on digital borehole logs, 

cone penetrations tests and digitized geological maps, available in the database of the Geological 

Survey of the Netherlands (Stafleu et al., 2011; TNO-GSN, 2022). For this study we have used the upper 

5 meters of the GeoTOP model. For the lithology one of the 100 realizations is taken. Figure 2A shows  

the lithological map of the area at a depth of 5 meters with respect to NAP (NAP is the Dutch ordnance 

datum approximating mean sea level).  

 

We used the groundwater model Groundwatertools, with the same spatial extent and resolution as 

the GeoTOP model. The groundwater model is the result of interpolation of data available at the online 

portal of TNO-GSN, 2022. The model includes a monthly estimate of the phreatic surface level 

(Dabekaussen et al., 2020; Zaadnoordijk et al., 2018). For this study we have taken the average slope 

(m/month) and phreatic surface height from the monthly data over a modelled period of 20 years at 

a random point in time. Figure 2B shows the average height of the phreatic surface at t=0 with respect 

to NAP.  

 

 
 Figure 1  Overview of workflow. Shallow and deep causes of subsidence are combined into one subsidence prediction. This 

prediction is checked against the observational data to refine the subsidence predictions by optimization of the parameters. 

This process is repeated multiple times. Image adapted after Candela et al., 2020. 

 

For the pressure field related to reservoir depletion in the deep subsurface, a 2-D  grid was 

constructed. The data contains a yearly value of pressure over the 2-D reservoir grid, a value for the 

average reservoir depth, and a value for the grid block volume. Figure 2C shows the total pressure 

depletion over the study time, for the extent of the gas field, with coordinates in the same synthetic 

system as the GeoTOP and groundwater model. As realistic for reservoirs, there are multiple centers 

of increased pressure depletion, which results in two subsidence bowls (see Fig 2C). 



 

 

Forward model 
A forward model is a schematized representation of the physics driving the subsidence processes. The 

subsidence is calculated as the combined effect of the deep and shallow causes. The models are kept 

simple to compare the influence of each process and not dive in the details the modelling. The 

pressure depletion is defined as the drop in pressure between two consecutive timesteps. To calculate 

reservoir compaction from pressure depletion we used a linear elastic compaction model (Candela et 

al., 2022). Cm,, the compaction coefficient of the reservoir is the single value to optimize in this study. 

To calculate surface movement from reservoir compaction, an influence function (Green’s function) 

was used (see Geertsma, 1973). 

Shallow causes of subsidence are compression, oxidation and shrinkage of peat and clay beds. 

Compression models often follow a logarithmic equation (e.g. Den Haan, 1996) while oxidation (and 

sometimes shrinkage) follows an exponential decay function (Van den Akker, 2008; Fokker et al., 

2019). We have chosen to only account for an exponential decay function to calculate the subsidence, 

with variable parameters for peat and clay. This is justified by the length of the study: for a 5 year 

period logarithmic equation for compression can be estimated with a linear function. Hence equation 

1 is assumed to account for subsidence of compression, oxidation and shrinkage. 

The equation calculates the subsidence for the part of the layer that is susceptible to subsidence. The 

effects of swelling are ignored. For a completely dry layer we can determine the fraction of a layer 

susceptible to subsidence hst=ht- R*h0 where R is the residual height, the fraction of the layer that is 

left after the full process of subsidence and h0 the original layer thickness. The groundwater variation 

in time is taken into account by calculating the fraction of the layer above the phreatic surface for 

each timestep, assuming no subsidence takes place below the phreatic surface. Over time the 

subsidence for a single layer can be calculated as:  

𝛥ℎ = (1 −  𝑒−𝑉 𝛥𝑡)(ℎ(𝑡) −  ℎ𝑤𝑒𝑡 − 𝑅 [ℎ0 −  ℎ𝑤𝑒𝑡])                 (1)  

In which V is the rate of subsidence and hwet the height of the phreatic surface within the layer. 

Figure 2  This image shows A) the lithological model of the synthetic area at a depth of 5 meters below NAP in 4 different 

lithologies, B) the phreatic surface height at t=0 of the synthetic study with respect to NAP and C) the pressure  depletion of 

our 2D upscales gas reservoir over a period of 5 years. 

 

 

 



 

 

ES-MDA 
For the parameter estimation method we used an algorithm often used in parameter estimation 

studies related to subsidence (e.g. Fokker et al., 2019; Gazzola et al., 2021). ES-MDA stand for 

Ensemble Smoothing with Multiple Data Assimilation (Emerick and Reynolds, 2016). An ensemble is a 

collections of members, resulting from a Monte Carlo analysis. Members represent single realizations  

of the subsidence with specific values for different parameters. A forward model calculates subsidence 

according to the set of parameters in each member. Subsequently the ES-MDA algorithm minimizes 

the mismatch between the estimated subsidence and the measured subsidence, by taking multiple 

steps in which the parameters are modified to reduce mismatch and increase the certainty in the 

parameter values and standard deviation. For the description of the model see Emerick and Reynolds, 

2016 and Fokker et al., 2019.  

Experimental set-up 
The synthetic subsidence data was created by the sum of the contribution of each subsidence process 

for 100x100 meter grid cells in the study area for a period of 5 years with monthly timesteps.. From 

the dataset 1500 random x,y locations were taken. Normally distributed noise was added to the data 

and functions as input for the covariance of the data. Noise levels and the compaction coefficient are 

varied. The quality of the estimate is quantified by the absolute error (AE) and absolute ensemble 

spread (AES) (see Baù et al, 2015). 

Results 
Figure 3 shows the parameter fit of four different models (A, B, C and D). The variance in fit is related 

to different noise levels, compaction coefficients and prior ensemble spread, from which the values 

are given for each model in the figure. Hence, the effects of prior parameter estimates, relative noise 

and signal contribution are tested. The estimated subsidence rate for peat and clay and the 

compaction coefficient of the gas reservoir for the prior estimate and each step in the assimilation are 

plotted on the y axis versus the ensemble member on the x axis. The black line denotes the actual 

value for that parameter. 

 

Discussion and conclusion  
We have introduced a workflow to disentangle the multiple-depth causes of the subsidence signal and 

identified potential assessment risk for when this method is applied to real data. By comparing four 

different model outcomes of a realistic synthetic data, we can draw conclusions on what factors 

should be considered when applying the methodology to real data. 

 

With model A and B of Figure 3 we have compared the influence of noise of the synthetic data to the 

subsidence fit. The lower the noise level, the lower the spread in our ensemble estimates (AES) and 

the lower the absolute error (AE) of the estimates. The AE and AES are scaled to the noise level given 

to the data. With model B and C we have compared the effect of relative influence of the different 

subsidence processes. In model C, we have chosen a value for Cm as such that the magnitude of 

subsidence of gas is in the same order as the magnitude of subsidence due to the shallow processes 

(peat and clay). From this comparison follows that if both multi-depth processes are in the same order, 

correctly estimating the contributions of the different processes becomes harder. The AES is larger for 

model C compared to model B, pointing towards a higher uncertainty in the subsidence estimate. 

From the comparison of model B with model D follows that the initial spread of our parameters has 

influence on the final estimate of subsidence. The prior spread of the estimate of Cm does not include 

the true value. As a result, the final Cm is overestimated, although the ensemble spread is reduced 



 

 

with each assimilation step. The estimates of peat and clay in model D are a bit below the true value, 

to compensate for the over estimation of Cm, resulting in a comparable AE and AES for model B and 

D.  

 

We show in our analysis that a combination of noise level, relative importance of multi-depth 

subsidence processes and the chosen prior spread in the ensemble parameters all influence the ability 

to estimate subsidence correctly. With synthetic data we have the advantage of the known true values 

of the parameters, whilst with real data this information is unknown. Hence, it if of imminent 

importance that the effects of each of the factors is understood correctly. When the methodology is 

applied to a real multi-source subsidence case study, a range of scenarios with varying ratios of the 

different influence factors should be tested. This means that parameter estimates outside the original 

distribution window should lead to critically review the prior values, and when different sources of 

subsidence contribute to the total subsidence, their potential relative contribution should be 

reviewed. Additionally, with a low ensemble spread, the noise level of the subsidence measurements 

should be checked. 

 

 

 
Figure 3  Results of the parameter estimation of 3 different models for 4 assimjlation steps with 50 ensemble members. The 

estimated parameters for peat and clay (subsidence rate) and gas related subsidence (compaction coefficient) are shown 
for each assimilation step. Black is the actual parameter value. For each model the noise level, the prior and post estimate 

chi-square error and the true compaction coefficient are indicated. 
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